Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.
Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.
Будем считать, что дано такое задание.
Дано: боковое ребро L = 10,
сторона основания а = 6√2 ≈ 8,4853.
Найти: площадь Sбок боковой поверхности, полную площадь S поверхности и объём V пирамиды.
Находим высоту Н пирамиды, используя длину бокового ребра и длину половины диагонали основания.
Н = √(10² - ((6√2*√2)/2)²) = √(100 - 36) = √64 = 8 см.
Находим апофему:
А = √(L² - (a/2)²) = √(10² - (6√2/2)²) = √(100 - 18) = √82 см.
Получаем:
Площадь основания So = a² = (6√2)² = 72 см².
Sбок = (1/2)РА = (1/2)*(4*6√2)*√82 = 12√164 = 24√41 ≈ 153,675 см².
Полная поверхность S = So + Sбок = 225,675 см².
Объём пирамиды V = (1/3)SoH = (1/3)*72*8 = 192 см³.