Задачки на теорему Пифагора, в довольно странной форме. Если говорят, что лестница в пяти метрах от стены - то обычно это означает, что любая часть лестницы находится в пяти метрах от стены Дальше везде обозначаем длину лестницы - L расстояние, на которое отнесён них лестницы от стены - а и высота, на которой верх лестницы касается стены - h a) L = 13 м a = 5 м h - ? L² = a² + h² h² = L² - a² = 13² - 5² = 169 - 25 = 144 h = √144 = 12 м б) a = 5 м h = 10 м L - ? L² = a² + h² = 5² + 10² = 25 + 100 = 125 L = √125 = 5√5 м в) L = 15 м h = 12 м a - ? L² = a² + h² a² = L² - h² = 15² - 12² = 225 - 144 = 81 a = √81 = 9 м
1) ΔАВС~ΔА1В1С1, АВ и А1В1 сходственные стороны треугольников, АВ:А1В1=3:5, А1В1=25 см; А 1С 1=30 см; В 1С 1=35 см. Найдите стороны ΔАВС. коэффициент подобия k = 3/5 AB = k*A₁B₁ = 3/5*25 = 15 см АС = k*А₁С₁ = 3/5*30 = 18 см BC = k*B₁C₁ = 3/5*35 = 21 см 2) ΔMNK~ΔM1N1K1 , M 1N 1=20 см, M 1K 1=45 см, N 1K 1=25см. Найдите периметр ΔMNK . Вычислите площадь ΔMNK, если известно, что площадь ΔM1N1K1 равна 180 см2. ошибка в условии M₁N₁ + N₁K₁ = M₁K₁, это не треугольник 3) Площади подобных треугольников равны 100дм2 и 25 дм2, сумма их периметров равна 117 дм. Найдите периметры обоих треугольников. Пусть коэффициент подобия большего треугольника к меньшему равен k Тогда их площади относятся как k² k² = 100/25 = 4 k = 2 Пусть периметр меньшего P Периметр большего K*P P+k*P = 117 P(1+2) = 117 P = 117/3 = 39 дм и периметр большего k*P = 2*39 = 78 дм
Дальше везде обозначаем длину лестницы - L
расстояние, на которое отнесён них лестницы от стены - а
и высота, на которой верх лестницы касается стены - h
a)
L = 13 м
a = 5 м
h - ?
L² = a² + h²
h² = L² - a² = 13² - 5² = 169 - 25 = 144
h = √144 = 12 м
б)
a = 5 м
h = 10 м
L - ?
L² = a² + h² = 5² + 10² = 25 + 100 = 125
L = √125 = 5√5 м
в)
L = 15 м
h = 12 м
a - ?
L² = a² + h²
a² = L² - h² = 15² - 12² = 225 - 144 = 81
a = √81 = 9 м
коэффициент подобия
k = 3/5
AB = k*A₁B₁ = 3/5*25 = 15 см
АС = k*А₁С₁ = 3/5*30 = 18 см
BC = k*B₁C₁ = 3/5*35 = 21 см
2) ΔMNK~ΔM1N1K1 , M 1N 1=20 см, M 1K 1=45 см, N 1K 1=25см. Найдите периметр ΔMNK . Вычислите площадь ΔMNK, если известно, что площадь ΔM1N1K1 равна 180 см2.
ошибка в условии M₁N₁ + N₁K₁ = M₁K₁, это не треугольник
3) Площади подобных треугольников равны 100дм2 и 25 дм2, сумма их периметров равна 117 дм. Найдите периметры обоих треугольников.
Пусть коэффициент подобия большего треугольника к меньшему равен k
Тогда их площади относятся как k²
k² = 100/25 = 4
k = 2
Пусть периметр меньшего P
Периметр большего K*P
P+k*P = 117
P(1+2) = 117
P = 117/3 = 39 дм
и периметр большего
k*P = 2*39 = 78 дм