В основании пирамиды SABCD прямоугольник со сторонами AD = 40 см, CD = 15 см. SD - высота пирамиды. Через точки S, C и середину K ребра AD проведено сечение, образующее с плоскостью ABD угол 45 °. Найдите площадь треугольника SCD. В ответ запишите число без наименования величины
высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·cos(120)
a²=34-30·(-0,5)=49
a=7
теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм
Тогда делаем другое предположение, что равные углы по 30 град(из первого утверждения), получается, что третий угол должен быть равен 120 град, и если мы сложим 30+30+120=180, то мы получим верное утверждение.
Теперь рассмотрим, что же за треугольники у нам вышли, допустим, что две равные стороны равны 1(это будет гипотенузой, если провести высоту в равнобедренном треугольнике). Чтобы определить половину длины основания достаточно воспользоваться соотношением: sin60=V3/2, т.е. основание будет равно V3, т.е. мы получили треугольник с отношением сторон 1:1:V3. Что дает нам сделать вывод, что данные треугольники не подобны.