АВС - данный равнобедренный треугольник с основанием АС = 30. АК - высота к боковой стороне ВС. АК = 24 Треугольник АКС прямоугольный. Находим по теореме Пифагора СК. СК = sqrt(30^2 - 24^2) = 18 Проводим высоту к основанию, это будет отрезок ВН. Треугольники ВНС и АКС подобны по двум углам. Тогда выполняется пропорция ВС / АС = НС / КС, НС = 1/2АС = 15 ВС / 30 = 15 / 18 Отсюда ВС = 30*15 / 18 = 25 Боковая сторона равна 25
А можно и уравнением сделать. АВ = х, ВК = х - 18 Уравнение: 24^2 + (x - 18)^2 = x^2 Решив уравнение, получите х = 25
1 признак. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AD║ BC, AD = BC. Доказать: ABCD - параллелограмм. Доказательство: Проведем BD. ВС = AD по условию, ∠1 = ∠2 как накрест лежащие при пересечении AD║BC секущей BD, BD - общая сторона для треугольников ABD и CDB, ⇒ ΔABD = ΔCDB по двум сторонам и углу между ними. Из равенства треугольников следует, что ∠3 = ∠4, а это накрест лежащие углы при пересечении прямых CD и АВ секущей BD, значит CD║AB. Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
2 признак. Если в четырехугольнике противоположные стороны равны, то этот четырехугольник - параллелограмм. Дано: ABCD, AB = CD, BC = AD. Доказать: ABCD - параллелограмм. Доказательство: Проведем BD. ВС = AD по условию, AB = CD по условию, BD - общая сторона для треугольников ABD и CDB, ⇒ ΔABD = ΔCDB по трем сторонам. Из равенства треугольников следует, что ∠1 = ∠2, а это накрест лежащие углы при пересечении прямых ВС и AD секущей BD, значит ВС║AD и ABCD - параллелограмм по первому признаку.
3 признак. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм. Дано: ABCD, AC∩BD = O, AO = OC, BO = OD. Доказать: ABCD - параллелограмм. Доказательство: AO = OC по условию, BO = OD по условию, ∠АОВ = ∠COD как вертикальные, ⇒ ΔАОВ = ΔCOD по двум сторонам и углу между ними. Значит, AB = CD и ∠1 = ∠2, а это накрест лежащие углы при пересечении прямых АВ и CD секущей АС, значит АВ║CD. ABCD - параллелограмм по первому признаку.
АК - высота к боковой стороне ВС. АК = 24
Треугольник АКС прямоугольный. Находим по теореме Пифагора СК.
СК = sqrt(30^2 - 24^2) = 18
Проводим высоту к основанию, это будет отрезок ВН.
Треугольники ВНС и АКС подобны по двум углам.
Тогда выполняется пропорция ВС / АС = НС / КС, НС = 1/2АС = 15
ВС / 30 = 15 / 18
Отсюда ВС = 30*15 / 18 = 25
Боковая сторона равна 25
А можно и уравнением сделать.
АВ = х, ВК = х - 18
Уравнение: 24^2 + (x - 18)^2 = x^2
Решив уравнение, получите х = 25
Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AD║ BC, AD = BC.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
∠1 = ∠2 как накрест лежащие при пересечении AD║BC секущей BD,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по двум сторонам и углу между ними.
Из равенства треугольников следует, что
∠3 = ∠4, а это накрест лежащие углы при пересечении прямых CD и АВ секущей BD, значит
CD║AB.
Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
2 признак.
Если в четырехугольнике противоположные стороны равны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AB = CD, BC = AD.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
AB = CD по условию,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по трем сторонам.
Из равенства треугольников следует, что
∠1 = ∠2, а это накрест лежащие углы при пересечении прямых ВС и AD секущей BD, значит ВС║AD и ABCD - параллелограмм по первому признаку.
3 признак.
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Дано: ABCD, AC∩BD = O, AO = OC, BO = OD.
Доказать: ABCD - параллелограмм.
Доказательство:
AO = OC по условию,
BO = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
Значит, AB = CD и ∠1 = ∠2, а это накрест лежащие углы при пересечении прямых АВ и CD секущей АС, значит АВ║CD.
ABCD - параллелограмм по первому признаку.