в поэме постоянно упоминаются некие "неугомонные" враги, которых должны уничтожить эти 12 красноармейцев. a) Кто же стал злейшим врагом вооружённых "апостолов"? b) О чём предупреждают 12 красногвардейцев безоружных людей?
Так как в условии не оговорено положение точки М, будем считать ее серединой любой из сторон треугольника АВС. Приведенное решение только для условия с этим предположением.
Сделаем дополнительные построения: соединим вершину перпендикуляра D с вершинами треугольника АВС. Тогда получится правильная пирамида АВСD с боковыми ребрами DA=DB=DC (так как точка О - центр правильного треугольника АВС, то отрезки DA, DB и DC равны, как наклонные к плоскости, проведенные из одной точки, проекции которых равны - радиусы описанной окружности ).
Соединим точку М с противоположной вершиной С. Тогда МС - высота правильного треугольника АВС и по его свойствам МС - высота и медиана.
Следовательно, точка О делит отрезок МС в отношении 2:1, считая от вершины С. Треугольник DOM - пифагоров и МО=3. Тогда ОС=6, а DC=√(DO²+OC²) = √(16+36) = √52 = 2√13.
Найдем сторону треугольника АВС. МС=МО+ОС = 3+6=9. Из прямоугольного треугольника АМС по Пифагору: МС² = АС²- АС²/4 => 81*4=3*АС² => АС=6√3. Тогда периметр треугольника АВС равен 18√3 ед.
Объём правильной четырёхугольной пирамиды: V=(1/3)a²h где а - сторона квадрата, основания пирамиды, h - высота пирамиды. Чтобы найти объём надо найти высоту пирамиды. Рассмотрим точку пересечения диагоналей квадрата. В эту точку опущена высота пирамиды, обозначим её О. Вершины квадрата обозначим АВСD, а вершину пирамиды S. В треугольнике АSO стороны AS - ребро пирамиды, SO - высота пирамиды, АО - половина диагонали основания пирамиды. Так как основание правильной пирамиды квадрат, а диагонали квадрата пересекаются под прямым углом, можем найти катеты АО и ВО прямоугольного равнобедренного треугольника АОВ по теореме Пифагора: AB²=AO²+BO², так как АО=ВО AB²=2AO² отсюда находим АО²=АВ²/2=6²/2=36/2=18 ⇒ АО=√18 Теперь можем найти высоту SO опять же по теореме Пифагора: AS²=SO²+AO² SO²=AS²-AO²=(√82)²-(√18)²=82-18=64 SO=8 Осталось найти объём V=(1/3)*6²*8=96
Так как в условии не оговорено положение точки М, будем считать ее серединой любой из сторон треугольника АВС. Приведенное решение только для условия с этим предположением.
Сделаем дополнительные построения: соединим вершину перпендикуляра D с вершинами треугольника АВС. Тогда получится правильная пирамида АВСD с боковыми ребрами DA=DB=DC (так как точка О - центр правильного треугольника АВС, то отрезки DA, DB и DC равны, как наклонные к плоскости, проведенные из одной точки, проекции которых равны - радиусы описанной окружности ).
Соединим точку М с противоположной вершиной С. Тогда МС - высота правильного треугольника АВС и по его свойствам МС - высота и медиана.
Следовательно, точка О делит отрезок МС в отношении 2:1, считая от вершины С. Треугольник DOM - пифагоров и МО=3. Тогда ОС=6, а DC=√(DO²+OC²) = √(16+36) = √52 = 2√13.
Найдем сторону треугольника АВС. МС=МО+ОС = 3+6=9. Из прямоугольного треугольника АМС по Пифагору: МС² = АС²- АС²/4 => 81*4=3*АС² => АС=6√3. Тогда периметр треугольника АВС равен 18√3 ед.
ответ: Рabc = 18√3. AD=BD=DC = 2√13 ед.
V=(1/3)a²h
где а - сторона квадрата, основания пирамиды, h - высота пирамиды.
Чтобы найти объём надо найти высоту пирамиды. Рассмотрим точку пересечения диагоналей квадрата. В эту точку опущена высота пирамиды, обозначим её О. Вершины квадрата обозначим АВСD, а вершину пирамиды S. В треугольнике АSO стороны AS - ребро пирамиды, SO - высота пирамиды, АО - половина диагонали основания пирамиды.
Так как основание правильной пирамиды квадрат, а диагонали квадрата пересекаются под прямым углом, можем найти катеты АО и ВО прямоугольного равнобедренного треугольника АОВ по теореме Пифагора:
AB²=AO²+BO², так как АО=ВО AB²=2AO² отсюда находим
АО²=АВ²/2=6²/2=36/2=18 ⇒ АО=√18
Теперь можем найти высоту SO опять же по теореме Пифагора:
AS²=SO²+AO²
SO²=AS²-AO²=(√82)²-(√18)²=82-18=64
SO=8
Осталось найти объём
V=(1/3)*6²*8=96
ответ: 96