В правильной треугольной пирамиде PABC ( с вершиной P )боковое ребро равно стороне основания. Точка M - середина ребра PB. Найдите косинус угла между прямыми CM и PO где O - центр основания пирамиды.
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
Через вершину B треугольника ABC проводим фронталь и горизонталь.
Переводим ABC в проецирующее положение. Для этого перпендикулярно В1Е1 вводим новую фронтальную плоскость Р4. Проецируем на неё точку S и треугольник ABC.
Из точки S4 проводим перпендикуляр к А4С4.
Длина отрезкаS4S – искомое расстояние между плоскостью треугольника ABC и точкой S.
Если требуется аналитическая проверка найденного расстояния, то по координатам точек А, В и С находим уравнение плоскости АВС:
95x -111y +154z - 6145 = 0.
Затем находим расстояние от точки S до плоскости АВС.
Для вычисления расстояния от точки S(Sx; Sy; Sz) до плоскости Ax + By + Cz + D = 0 используем формулу:
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
Ход решения
Через вершину B треугольника ABC проводим фронталь и горизонталь.
Переводим ABC в проецирующее положение. Для этого перпендикулярно В1Е1 вводим новую фронтальную плоскость Р4. Проецируем на неё точку S и треугольник ABC.
Из точки S4 проводим перпендикуляр к А4С4.
Длина отрезкаS4S – искомое расстояние между плоскостью треугольника ABC и точкой S.
Если требуется аналитическая проверка найденного расстояния, то по координатам точек А, В и С находим уравнение плоскости АВС:
95x -111y +154z - 6145 = 0.
Затем находим расстояние от точки S до плоскости АВС.
Для вычисления расстояния от точки S(Sx; Sy; Sz) до плоскости Ax + By + Cz + D = 0 используем формулу:
d = |A·Mx + B·My + C·Mz + D| /√(A² + B² + C²)
Подставим в формулу данные:
d = |95·65 + (-111)·10 + 154·85 + (-6145)| √(95² + (-111)² + 154²) = |6175 - 1110 + 13090 - 6145| /√(9025 + 12321 + 23716) =
= 12010 /√45062 = 6005√45062 /22531 ≈ 56.57672.
Полученное расчётное значение полностью совпадает с графическим расчётом.