В прямоугольном параллелепипеде ABCDA,B C. D. AB=BC=1,AA =2 , точка М- середина DD Найти: a) длину отрезка MB 6) угол между АМ и BD, в) расстояние от точки D до плоскости ACM г) угол между ВМ и плоскостью ACM д) угол между плоскостями АВС и BCD
1. б) может быть верно - свойство медианы равнобедренного треугольника, проведённой к основанию, а про медианы, проведённые к боковым сторонам, ничего подобного не говорится.
2. б) все его углы равны и в) любая высота является биссектрисой и медианой. б - свойство углов равностороннего треугольника, в - про это я пишу в 4 пункте
3. б) в равнобедренном. В любом точно нет. В равностороннем таких высот несколько, а спрашивается про одну
4. а) всегда верно - так как треугольник равносторонний, то у него стороны являются и основаниями и боковыми сторонами одновременно, если выделять здесь равнобедренные треугольники, поэтому свойство медианы равнобедренного треугольника распространяется на все медианы, биссектрисы и высоты.
5. в) ответы а и б неверны. ответ а неверен, так как основание равнобедренного треугольника не всегда равно боковым сторонам. ответ б неверен, так как медианой, биссектрисой и высотой является только медиана, ПРОВЕДЁННАЯ К ОСНОВАНИЮ (опять же таки повторяю про это свойство)
6. в) в равностороннем. Рассмотрим треугольник ABC, который не является ни равносторонним, ни равнобедренным и проведём в нём высоту. Высота AH не поделила т. ABC на равные треугольники ABH и ACH. Рассмотрим другой треугольник DEF, который является равнобедренным. В нём боковые стороны DE и FE. Высота EH делит треугольник на 2 равных. Они равны по 1, 2 и 3 признакам равенства треугольников (здесь можно доказать 1 из них, без разницы), так как EH является также медианой и биссектрисой, а FE=DE. А теперь проведём высоту FG. Она не поделила треугольник DEF на равные, так как высота проведена к боковой стороне, а не к основанию. Следовательно, вариант в верный.
P.S. учите геометрию и учитесь внимательно читать какие бы то ни было геометрические свойства, признаки, определения, теоремы и т.д. и т.п. и всё получится(:
1. б
2. б и в
3. б
4. а
5. в
6. в
Объяснение:
1. б) может быть верно - свойство медианы равнобедренного треугольника, проведённой к основанию, а про медианы, проведённые к боковым сторонам, ничего подобного не говорится.
2. б) все его углы равны и в) любая высота является биссектрисой и медианой. б - свойство углов равностороннего треугольника, в - про это я пишу в 4 пункте
3. б) в равнобедренном. В любом точно нет. В равностороннем таких высот несколько, а спрашивается про одну
4. а) всегда верно - так как треугольник равносторонний, то у него стороны являются и основаниями и боковыми сторонами одновременно, если выделять здесь равнобедренные треугольники, поэтому свойство медианы равнобедренного треугольника распространяется на все медианы, биссектрисы и высоты.
5. в) ответы а и б неверны. ответ а неверен, так как основание равнобедренного треугольника не всегда равно боковым сторонам. ответ б неверен, так как медианой, биссектрисой и высотой является только медиана, ПРОВЕДЁННАЯ К ОСНОВАНИЮ (опять же таки повторяю про это свойство)
6. в) в равностороннем. Рассмотрим треугольник ABC, который не является ни равносторонним, ни равнобедренным и проведём в нём высоту. Высота AH не поделила т. ABC на равные треугольники ABH и ACH. Рассмотрим другой треугольник DEF, который является равнобедренным. В нём боковые стороны DE и FE. Высота EH делит треугольник на 2 равных. Они равны по 1, 2 и 3 признакам равенства треугольников (здесь можно доказать 1 из них, без разницы), так как EH является также медианой и биссектрисой, а FE=DE. А теперь проведём высоту FG. Она не поделила треугольник DEF на равные, так как высота проведена к боковой стороне, а не к основанию. Следовательно, вариант в верный.
P.S. учите геометрию и учитесь внимательно читать какие бы то ни было геометрические свойства, признаки, определения, теоремы и т.д. и т.п. и всё получится(:
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².