В прямоугольном треугольнике острый угол относится к внешнему, не смежному с ним как 4 10 . Найдите острые углы тнеугольника и его гипотенузу , если катет, лежащий напротив наименьшего острого угла равен 8 см
S=0,5absinα (Площа трикутника дорівнює половині добутку двох сторін на синус кута між ними)
S=0,5aha (Площа трикутника дорівнює половині добутку сторони на висоту, проведену до цієї сторони)
S=, p=(a+b+c):2 (Формула Герона)
S= (R-радіус описаного кола)
S=pr (r-радіус вписаного кола)
Площа паралелограма:
S=absinα (Площа паралелограма дорівнює добутку двох сторін на синус кута між ними)
S=aha (Площа паралелограма дорівнює добутку сторони на висоту, проведену до цієї сторони)
S=0,5d1d2sinφ (Площа паралелограма дорівнює половині добутку діагоналей на синус кута між ними)
Площа ромба:
S=absinα (Площа ромба дорівнює добутку двох сторін на синус кута між ними)
S=aha (Площа ромба дорівнює добутку сторони на висоту, проведену до цієї сторони)
S=0,5d1d2 (Площа ромба дорівнює половині добутку діагоналей)
Площа прямокутника:
S=ab (Площа прямокутника дорівнює добутку сусідніх сторін)
Площа квадрата:
S=a2(Площа квадрата дорівнює квадрату сторони)
Площа трапеції:
S= (Площа трапеції дорівнює добутку половині суми основ на висоту)
Площі подібних фігур:
S1:S2=k2 (Площа подібних фігур відносяться як квадрат коефіцієнта подібності)
S=0,5aha (Площа трикутника дорівнює половині добутку сторони на висоту, проведену до цієї сторони)
S=, p=(a+b+c):2 (Формула Герона)
S= (R-радіус описаного кола)
S=pr (r-радіус вписаного кола)
Площа паралелограма:
S=absinα (Площа паралелограма дорівнює добутку двох сторін на синус кута між ними)
S=aha (Площа паралелограма дорівнює добутку сторони на висоту, проведену до цієї сторони)
S=0,5d1d2sinφ (Площа паралелограма дорівнює половині добутку діагоналей на синус кута між ними)
Площа ромба:
S=absinα (Площа ромба дорівнює добутку двох сторін на синус кута між ними)
S=aha (Площа ромба дорівнює добутку сторони на висоту, проведену до цієї сторони)
S=0,5d1d2 (Площа ромба дорівнює половині добутку діагоналей)
Площа прямокутника:
S=ab (Площа прямокутника дорівнює добутку сусідніх сторін)
Площа квадрата:
S=a2(Площа квадрата дорівнює квадрату сторони)
Площа трапеції:
S= (Площа трапеції дорівнює добутку половині суми основ на висоту)
Площі подібних фігур:
S1:S2=k2 (Площа подібних фігур відносяться як квадрат коефіцієнта подібності)
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение: