В прямоугольном треугольнике ВОМ ( О = 90°) , ВМ=14, BМО=30°
с центром в точке В проведена окружность. Каким должен быть ее радиус,
чтобы:
а) окружность касалась прямой МО;
b) окружность не имела общих точек с прямой МО;
c) окружность имела две общие точки с прямой МО.
Чтобы найти расстояние между такими прямыми нужно одну из прямых перенести параллельно самой себе так, чтобы она пересекла плоскость другой прямой.
Переносим прямую ВД1 (главную диагональ куба) параллельно себе. Получим прямую В2Д2, которая пересекла плоскость АА1В1В в точке Е, являющейся серединой отрезка АВ1 и серединой отрезка В2Д2. Из точки Е опустим перпендикуляр на прямую ВД1 и попадём точно в середину ВД1, которая является и центром куба О.
Расстояние ЕО и будет расстоянием между прямыми АВ1 и ВД1.
Отрезок ЕО - есть расстояние между центром плоскости АА1В1В и центром куба. Это расстояние по величине равно половине ребра.
Таким образом, ЕО = 0,5 · 5√6 = 2,5√6
ответ: 2,5√6
Треугольник АКВ получается таким образом равнобедренным, и углы при его основании АВ должны быть равными. Найдем их:
<KAB=<KBA=(180-<K):2=(180-72):2=54°.
Угол КВО прямой, т.к. касательная к окружности КВ перпендикулярна к радиусу ОВ, проведенному в точку касания В. Отсюда
<ABO=<KBO-<KBA=90-54=36°