В прямоугольной трапеции боковые стороны равны 10см и 8см. Найдите площадь трапеции, если меньшее основание равно 7см, а острый угол трапеции равен 30 градусам Заранее
Прямая | имеет с пересекающимися прямыми а и b две общие точки.
третья точка - это точка пересечения прямых а и b
итак есть ТРИ ТОЧКИ , через которые можно провести ТОЛЬКО ОДНУ плоскость.
каждая прямая проходит через ДВЕ точки (из этих трех)
если прямая проходит через ДВЕ точки плоскости, то она лежит в этой плоскости
ДОКАЗАНО
если провести прямую через точку М в плоскости треугольника АВС, то она обязательно пересечет две стороны или даже три стороны, так как стороны треугольника НЕ параллельны
Объяснение:
Прямая | имеет с пересекающимися прямыми а и b две общие точки.
третья точка - это точка пересечения прямых а и b
итак есть ТРИ ТОЧКИ , через которые можно провести ТОЛЬКО ОДНУ плоскость.
каждая прямая проходит через ДВЕ точки (из этих трех)
если прямая проходит через ДВЕ точки плоскости, то она лежит в этой плоскости
ДОКАЗАНО
если провести прямую через точку М в плоскости треугольника АВС, то она обязательно пересечет две стороны или даже три стороны, так как стороны треугольника НЕ параллельны
1. y=4-x², график парабола ветви направлены вниз
x | -2| -1 |0 | 1 | 2
y | 0 | 3 | 4 | 3 |0
2. границы интегрирования: 4-x²=0, x₁=-2, x₂=2. => a=-2, b=2
3. подынтегральная функция: y=4-x²
4. S= S_{-2} ^{2} (4- x^{2} )dx=(4x- \frac{ x^{3} }{3} )| _{-2} ^{2} =(4*2- \frac{ 2^{3} }{3} )-(4*(-2)- \frac{(-2) ^{2} }{3} )4.S=S
−2
2
(4−x
2
)dx=(4x−
3
x
3
)∣
−2
2
=(4∗2−
3
2
3
)−(4∗(−2)−
3
(−2)
2
)
=8- \frac{8}{3} +8- \frac{8}{3} =16- \frac{16}{3} = \frac{32}{3}=8−
3
8
+8−
3
8
=16−
3
16
=
3
32
S=10 \frac{2}{3}S=10
3
2
ед.кв.