В равнобедренном треугольнике АВС на боковых сторонах АС и ВС соответственно отложены равные отрезки СМ и СК. Отрезки АК и ВМ пересекаются в точке О. Докажите, что
1) треугольник АОВ равнобедренный
2) отрезки ОМ и ОК равны и можете треугольник нарисовать)
Определим сторону основания пирамиды.
АВ²=36+36= 72,
АВ=√72=6√2.
Площадь основания равна S= АВ²=72,
Объем пирамиды вычислим по формуле:
V=(S · h) / 3 = 72·8/3=24·8=192 (куб. ед.)
Все боковые грани пирамиды равнобедренные треугольники равные между собой.
Рассмотрим одну из боковых граней: АSВ. Построим высоты SК
АК= 3√2.
Определим длину SК по теореме Пифагора.
SК²=10²-(3√2)²=100-18=82,
SК=√82.
Определим площадь грани АSВ.
S =0,5·АВ · SК = 0,5·6√2·√82=3√164.
Площадь боковой поверхности пирамиды равна
4·3√164=12√164.
Полная площадь поверхности пирамиды равна
12√164+72≈12·13+72=228(кв. ед.)
ответ: 192 куб. ед., 228 кв. ед.
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.