Назовем трапецию ABCD начиная с левого края большего основания, двигаясь по часовой стрелке.Так как центр окружности лежит на большем основании, это значит, что трапеция равнобедренная => большее основание является диаметром окружности. Проведем GO перпендикулярно AD. Получим угол AGD=90 градусов, как угол опирающийся на диаметр. Рассмотрим треугольник AGD -прямоугольный. Пусть AG=x,тогда и GD=x. По теореме Пифагора: 400=2 => х=10 . Рассмотрим треугольник AGO - прямоугольный. По теореме Пифагора: GO =10. GO равно высоте трапеции. Получаем S=(BC+AD)GO/2= (0,6*20+20)*10/2=160
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5