В треугольник со сторонами 6 см, 7 см и 12 см вписана окружность. К окружности проведена касательная, пересекающая две большие стороны треугольника. Чему равен периметр отсеченного треугольника?
ВН=h -высота параллелограмма, ВD - другая диагональ параллелограмма. Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х. Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см². Высота ВН разделила ΔАВD на два треугольника с одной высотой h. Определим площадь каждого из этих треугольников. S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh. S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh Сумма площадей этих треугольников равна площади ΔАВD=30 см². 1,5хh+хh=30, 2,5хh=30, h=30/2,5х=12/х. Вычислим площадь ΔАВМ. S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см². ответ: 18 см².
ΔАВС-равносторонний 1) ВК - в равностороннем ΔАВС- является и
АВ=ВС=АС=9√3 высотой и медианой
ВК-биссектриса
Найти: ВК=? 2) рассмотрим ΔАВК-прямоугольный
АВ=9√3, АК=1\2 АС=1/2·9√3=4,5√3=9/2√3
3) По Т.Пифагора: ВК=√АВ²-АК²=
= √(9√3)²-(9/2√3)²=
= √81·3-81/4·3=√729/4=27/2=13,5
ответ: 13,5
Пусть одна часть равна х, тогда по условию АМ=3х, МD=2х.
Диагональ ВD делит его на два равных треугольника, площади которых также равны, S(АВD)=S(ВСD)= 30 см².
Высота ВН разделила ΔАВD на два треугольника с одной высотой h.
Определим площадь каждого из этих треугольников.
S(АВН)=0,5·АМ·ВМ=0,5·3х·h=1,5хh.
S(ВМН)=0,5·МD·ВН=0,5·2х·h=хh
Сумма площадей этих треугольников равна площади ΔАВD=30 см².
1,5хh+хh=30,
2,5хh=30,
h=30/2,5х=12/х.
Вычислим площадь ΔАВМ.
S(АВМ)=0,5·АМ·h=0,5·3х·12/х=0,5·3·12=18 см².
ответ: 18 см².