Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
оьмдды
22.09.2022 00:53 •
Геометрия
В треугольнике Δ A B C , A C = C BВычисли стороны треугольника, если.
основа треугольника на 8 м меньше от боковой стороны, его
периметр ABC равна 88 м .△A B C м.
Показать ответ
Ответ:
камка7
12.01.2023 07:31
В треугольнике АВС угол С = 90 градусов, угол А = 60 градусов, ВС = 8 корень из 3. Найдите АВ.
угол С = 90 градусов, треугольник АВС - прямоугольный
AB = BC/sinA = 8√3 / sin60 = 8√3 / √3/2 = 16
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 36 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 36√3 *sin30 = 36√3 * 1/2 = 18√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 18√3 *sin60 = 18√3 * √3/2 = 27
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 40 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 40√3 *sin30 = 40√3 * 1/2 = 20√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 20√3 *sin60 = 20√3 * √3/2 = 30
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 88 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 88√3 *sin30 = 88√3 * 1/2 = 44√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 44√3 *sin60 = 44√3 * √3/2 = 66
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 52 корень из
3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 52√3 *sin30 = 52√3 * 1/2 = 26√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 26√3 *sin60 = 26√3 * √3/2 = 39
0,0
(0 оценок)
Ответ:
Glek11
11.03.2022 17:55
a=BC, b=AC, c=AB Пусть биссектриса BD=x, а ∠ADB=α
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8
0,0
(0 оценок)
Популярные вопросы: Геометрия
Lizunochek2329
17.05.2020 12:11
Точки A, B и C лежат на одной прямой, причём BC=8см,AB-BC=8см. Какое из следующих утверждений верно...
aresu
24.04.2023 08:25
Дано: MN=KL=1,4см;∢ONM=60°. Найти: диаметрсм; ∢MNR=°; ∢NKL=°....
Рустам2009
13.12.2020 03:10
1. Найти углы ромба, если один из них на 200 больше другого. 2. Найти периметр квадрата, если его сторона равна 28 см.3. Найти углы ромба, если сумма двух из них равна 2100.4....
Аниматик
10.10.2022 08:00
Как найти пирриметр 20-угольника...
Timpo
16.04.2022 11:58
Знайдіть сторону трикутника, якщо дві інші сторони утворюють кут 150° і дорів- нюють 33 см і 2 см....
ываывс
01.12.2022 19:59
В треугольнике ABC угол C равен 90 tg Aравен корень 15 найти cos A...
kirill055
21.07.2020 16:19
Прямоугольник разбит прямыми перпендикулярными его сторонам на четыре части. Площади трех частей равны 8,10 и 12. Найдите площадь четвертой(незакрашенной) части прямоугольника....
51Qwerty15
21.04.2022 11:21
Даны координаты вершин пирамиды А1 А2 А3 А4. Средствами векторной алгебры найти: 1) угол между ребрами А1 А2 и А1 А4; 2) площадь грани А1 А2 А3; 3) объем пирамиды А1 А2 А3...
mvrlin
27.07.2022 10:18
Найдите площадь трапеции. Можно с объяснениями...
timatima3
20.11.2022 13:44
Дана правильная треугольная призма. построить сечение плоскостью, которая проходит через точку c1 перпендикулярно прямой a1b. !...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
угол С = 90 градусов, треугольник АВС - прямоугольный
AB = BC/sinA = 8√3 / sin60 = 8√3 / √3/2 = 16
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 36 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 36√3 *sin30 = 36√3 * 1/2 = 18√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 18√3 *sin60 = 18√3 * √3/2 = 27
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 40 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 40√3 *sin30 = 40√3 * 1/2 = 20√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 20√3 *sin60 = 20√3 * √3/2 = 30
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 88 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 88√3 *sin30 = 88√3 * 1/2 = 44√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 44√3 *sin60 = 44√3 * √3/2 = 66
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 52 корень из
3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 52√3 *sin30 = 52√3 * 1/2 = 26√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 26√3 *sin60 = 26√3 * √3/2 = 39
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8