Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC и из этого треугольника найдем угол SCB. Найдем сторону квадрата: BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4 ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB: SB²=SD²-BD² SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3. Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3 tg∠SCB=√3, ∠SCB=60 градусов
сумма всех углов треугольника равна 180 градусам. у нас известны два угла из трех ( b = 60, c = 90 ). поэтому мы можем найти третий угол:
180 - 60 - 90 = 30 ( это угол a )
в есть следующая теорема:
"в прямоугольном треугольнике катет, лежайщий против угла в 30 градусов, равен половине гипотенузы."
в данном треугольнике гипотенузой является ab (так как эта сторона лежит против угла в 90 градусов), катетами являются ac и cb.
из теоремы выше понятно, что ab = 2cb
известно, что ab + bc = 111
теперь выразим ab: ab = 111 - bc
теперь все это запишем в уравнение:
мы знаем, что ab можно выразить двумя способами: ab = 111 - bc и ab = 2cb
поэтому можно их прировнять
ab = ab
или
111 - bc = 2cb
111 = 3cb
cb = 111 / 3
так как ab = 2cb, ab = 2 * 111 / 3 = 74
Найдем сторону квадрата:
BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов