В треугольнике ABC точка D, взятая на стороне AB, делит её в отношении BD:AD=2:1, а медиана АЕ пересекает отрезок CD в точке О. Найдите S ∆АВС, если S ∆AOD=20 см²
Из равенства двугранных углов (и = 45 градусов) при ребрах основания следует, что получатся прямоугольные треугольники (равные --с общим катетом, равным высоте пирамиды) и равнобедренные (т.к. оба острых угла по 45 градусов))) и второй катет этих равных прямоугольных треугольников будет радиусом вписанной в АВС окружности (равные отрезки перпендикулярны сторонам треугольника))) высота пирамиды будет равна этому радиусу вписанной в АВС окружности (чтобы построить линейный угол двугранного угла, нужно опустить перпендикуляры на линию пересечения плоскостей)))
высота пирамиды будет равна этому радиусу вписанной в АВС окружности
(чтобы построить линейный угол двугранного угла, нужно опустить перпендикуляры на линию пересечения плоскостей)))
Угол АОС=120° Меньшая дуга АC=120°,
большая дуга АC=360°-120°=240°
Возможны два случая расположения т.В.
а) Точка В расположена на большей дуге АС.
Точка В делит дугу 240° в отношении АВ=3 части, ВС=5 частей. ⇒
◡АВ=240°:8•3=90°; ◡ВС=240:8•5=150°.
Тогда в ∆ АВС его вписанные углы равны:
угол В равен половине центрального угла АОС=120°:2=60°.
Угол С равен половине центрального АОВ и равен 90°:2=45°.
Угол А=половине центрального СОВ и равен 150:2=75°⇒
Углы ∆ АВС равны 45°, 60°, 75°
б) Точка В расположена на меньшей дуге АС.
◡АВ=120°:8•3=45°; ◡ВС=120°:8•5=75°
Вписанные углы равны половине градусной меры дуг, на которые опираются.
∠А=75°:2=37,5°
∠С=45°:2=22,5°
∠В=240°:2=120°
Углы ∆ АВС равны 22,5°; 37,5°; 120°.