Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.
Достроим этот треугольник до прямоугольника, чьи стороны будут находиться на контуре клетки.
Рассмотрим треугольник АDB:
Он прямоугольный, значит, по теореме Пифагора:
АВ²= DB² + AD² = 5² + 9² = 25 + 81 = 106
так как нам нужны суммы Квадратов сторон, значит оставляем
Аналогично рассмотрим треугольник ВЕС, угол Е также прямой,
ВС² = ВЕ² + ЕС² = 4² + 5² = 16 + 25 = 41
Рассмотрим треугольник АFC -> угол F прямой,
АС² = АF² + FC² = 9² + 4² = 81 + 16 = 97
Теперь сложим всё:
АВ² + АС² + ВС² = 106+41+97 = 244, если не ошибаюсь