В треугольнике АВС угол A = 30°, AC = 14 см, AB = 8 см. Через вершину А проведена прямая а, параллельная AB. Найти: А)расстояние от точки В до прямой АС Б)расстояние между прямыми а и АВ
Т.к. прямая ВЕ построена параллелно CD, то BCDE - параллелограмм, противоположные стороны параллелограмма равны, т.е. BC=ED, BE=CD, т.к. ВС=7см (по условию задчи), то ED=7см, Большее основание траеции AD=AE+ED,
AD=4+7=11 см
Средняя линия трапеции d=(AD+BC)/2
d=(11+7)/2=9 см
Периметр трапеции Р=AB+BC+CD+AD
Т.к. периметр треугольника ABE равен 17 см, то АВ+ВЕ=17-4=13см, т.к. ВЕ=CD, то AB+CD=13см
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
Т.к. ABCD - трапеция, то ВС параллельно AD,
Т.к. прямая ВЕ построена параллелно CD, то BCDE - параллелограмм, противоположные стороны параллелограмма равны, т.е. BC=ED, BE=CD, т.к. ВС=7см (по условию задчи), то ED=7см, Большее основание траеции AD=AE+ED,
AD=4+7=11 см
Средняя линия трапеции d=(AD+BC)/2
d=(11+7)/2=9 см
Периметр трапеции Р=AB+BC+CD+AD
Т.к. периметр треугольника ABE равен 17 см, то АВ+ВЕ=17-4=13см, т.к. ВЕ=CD, то AB+CD=13см
Периметр трапеции Р=AB+CD+AD+ВС=13+11+7=31см
ответ d=9 см, Р=31см
Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора
АВ^2=BC^2+AC^2
АВ^2=6^2+8^2 = 36+64=100
AB=10
AO=10:2=5 (cм) - радиус описанной окружности.
SO - высота пирамиды. S - вершина пирамиды.
Рассмотрим треуг-к АОВ. Угол О=90
По т. Пифагора
SВ^2=ОB^2+SО^2
SО^2=SВ^2-ОB^2
SО^2=13^2-5^2 = 169-25=144
SО=12(см)
ответ:12(см)