Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Проведем диагонали параллелограмма. Рассмотрим треугольники ВДС и КЕС. ВС:КС=12:3=4:1 СД:СЕ=8:2=4:1 Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол. Второй признак подобия треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны, ⇒КЕ параллельна ВД. Проведем через А прямую, параллельную ВД. Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно. ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам. ⇒МС=ВС*2=24 см МК=МС-КС=24-3=21 см АР:РС=МК:КС АР:РС=21:3=7:1 ------------- [email protected]
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Рассмотрим треугольники ВДС и КЕС.
ВС:КС=12:3=4:1
СД:СЕ=8:2=4:1
Стороны треугольниов ВСД и КСЕ пропорциональны и имеют общий угол.
Второй признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Треугольники ВСД и КСЕ подобны,⇒ углы при КЕ и ВД соответственно равны,
⇒КЕ параллельна ВД.
Проведем через А прямую, параллельную ВД.
Продлим стороны СВ и СД до пересечения с этой прямой в точках М и Н соответсвенно.
ВД- средняя линия В треугольника МСН , т.к. параллельна МН и делит АС пополам.
⇒МС=ВС*2=24 см
МК=МС-КС=24-3=21 см
АР:РС=МК:КС
АР:РС=21:3=7:1
-------------
[email protected]