Задание 5-9 геометрия 5+3 б через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ. Nadinbdjdf 10.04.2012 Попросите больше объяснений Следить Отметить нарушение! ответы и объяснения ответы и объяснения 1
Лучший ответ! Djamik123 ученый ответил 10.04.2012 соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
1. От точки А строим угол, равный данному (описано в первом варианте) и на полученной второй его стороне откладываем отрезок АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на прямую "а". Для этого: Из точки В проводим окружность любого радиуса R, чтобы пересекла прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр. На пересечении прямых ВМ и "а" ставим точку С. Соединяем точки А,В и С и получаем прямоугольный треугольник АВС с прямым углом <C и с заданными гипотенузой и острым углом. 2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен. 3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С. Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.
5-9 геометрия 5+3 б
через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся в точке С. Найдите угол АСВ.
Nadinbdjdf 10.04.2012
Попросите больше объяснений Следить Отметить нарушение!
ответы и объяснения
ответы и объяснения
1
Лучший ответ!
Djamik123 ученый ответил 10.04.2012
соединим хорду АВ с радиусом..получается равносторонний треугольник , углы в нем равны = 60 градусов..
значит угол АОВ = 60 градусов..проведем касательные..из четырехугольник известны два угла по 90 градусов в точке касания касательных..
угол АОВ + 90 + 90 + АСВ = 360, х = 360 - 90 - 90 - 60 = 120 градусов
варианте) и на полученной второй его стороне откладываем отрезок
АВ, равный данной гипотенузе. Из точки В опускаем перпендикуляр на
прямую "а". Для этого:
Из точки В проводим окружность любого радиуса R, чтобы пересекла
прямую "а" в точках G и Q. Из точек G и Q тем же радиусом проводим
две дуги, пересекающиеся в точке M. Прямая ВМ - искомый перпендикуляр.
На пересечении прямых ВМ и "а" ставим точку С.
Соединяем точки А,В и С и получаем прямоугольный треугольник АВС
с прямым углом <C и с заданными гипотенузой и острым углом.
2. На прямой "а" откладываем отрезок, равный одной из сторон, например, АС. Проводим окружности с центрами в точках А и С радиусами, равными двум другим сторонам, например, АВ и СВ соответственно. В точке пересечения этих окружностей получаем точку В. Треугольник построен.
3. На прямой "а" откладываем отрезок, равный стороне АВ, к которой проведена высота СН. Проводим окружность радиуса ВС с центром в точке В. Из точки В к прямой "а" восстанавливаем перпендикуляр и на нем откладываем отрезок ВР, равный высоте СН. Из точки Р проводим перпендикуляр к отрезку ВР и в точке пересечения этого перпендикуляра с проведенной ранее окружностью ставим точку С.
Соединив точки А,С и В получаем искомый треугольник.
P.S. Построение перпендикуляра к прямой в заданную точку не описываю - это стандартное построение.