Поэтому, как только начинаешь читать следы какого-нибудь одного существа, глядишь, а ты уже разбираешься в жизни сотен и тысяч других существ будь то звери птицы или даже растения. интересное это дело - читать следы. но самое интересное в этом то, что сколько бы ты ни читал их, до конца их ни как не прочитаешь.это от того, что следовую книгу пишет сама жизнь, которая идет все время вперед и никогда не останавливается, а следы, как и подобает , хотя и идут за жизнью, но остаются у нее позади. всем интересно читать эту следовую книгу и всем от этого бывает польза. только читать ее нужно строчка за строчкой, как на охоте, надо обязательно глядеть вперед, по направлению следов, тогда не ошибешься и заранее будешь знать, что надо делать в будущем.
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей
Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны.
Сторона АЕ треугольника АДЕ равна АС+СЕ:
АЕ=8+4=12 см.
Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5
Найдем стороны треугольника АДЕ:
АД=АВ*k=10*1.5=15 см.
ДЕ=ВС*k=4*1,5=6 см.
ВД=АД-АБ=15-10=5 см.
ответ: ВД=5 см. ДЕ=6 см.