Необходимо найти радиус этой окружности. Углу равному 60 градусов соответствует дуга длиною 2пи Найдем длину дуги всей окружности. (2пи:60)=(х:360) х=12пи С(длина дуги окружности)=2пи*р(радиус окружности)=12пи р=6
Теперь можно найти длину хорды, которая стягивает эту дугу. Найдем эту длину из треугольника, у которого две стороны равны радиусу, а угол, который лежит между этими сторонами , равный 60 градусов. Такой треугольник будет равносторонний , а значит длина хорды будет равна длине радиуса. h=6 Формула площади сектора окружности :
Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.
Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле
где a и b — длины катетов, c — гипотенузы.
Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.
Задача 1.
Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.
Дано: ∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
BM=4 см, AM=6 см.
Найти:
1) По свойству отрезков касательных, проведенных из одной точки,
AK=AM=6 см,
BF=BM=4 см,
CK=CF=x см.
2) AB=AM+BM=6+4=10 см,
AC=AK+CK=(6+x) см,
BC=BF+CF=(4+x) см.
3) По теореме Пифагора:
По теореме Виета,
Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.
4)
ответ: 24 см, 24 см², 2 см.
Задача 2.
Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.
Дано:∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
AB=26 см, r=4 см.
Найти:
1) Проведем отрезки OK и OF.
(как радиусы, проведенные в точки касания).
Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).
А так как OK=OF (как радиусы), то OKCF — квадрат.
2) По свойству касательных, проведенных из одной точки,
Углу равному 60 градусов соответствует дуга длиною 2пи
Найдем длину дуги всей окружности.
(2пи:60)=(х:360)
х=12пи
С(длина дуги окружности)=2пи*р(радиус окружности)=12пи
р=6
Теперь можно найти длину хорды, которая стягивает эту дугу.
Найдем эту длину из треугольника, у которого две стороны равны радиусу, а угол, который лежит между этими сторонами , равный 60 градусов.
Такой треугольник будет равносторонний , а значит длина хорды будет равна длине радиуса. h=6
Формула площади сектора окружности :
n-градусная мера дуги
Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.
Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле
где a и b — длины катетов, c — гипотенузы.
Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.
Задача 1.
Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.
Дано: ∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
BM=4 см, AM=6 см.
Найти:
1) По свойству отрезков касательных, проведенных из одной точки,
AK=AM=6 см,
BF=BM=4 см,
CK=CF=x см.
2) AB=AM+BM=6+4=10 см,
AC=AK+CK=(6+x) см,
BC=BF+CF=(4+x) см.
3) По теореме Пифагора:
По теореме Виета,
Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.
4)
ответ: 24 см, 24 см², 2 см.
Задача 2.
Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.
Дано:∆ ABC, ∠C=90º,
окружность (O, r) — вписанная,
K, M, F — точки касания со сторонами AC, AB, BC,
AB=26 см, r=4 см.
Найти:
1) Проведем отрезки OK и OF.
(как радиусы, проведенные в точки касания).
Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).
А так как OK=OF (как радиусы), то OKCF — квадрат.
2) По свойству касательных, проведенных из одной точки,
AM=AK=x см,
BF=BM=(26-x) см,
CF=CK=r=4 см.
3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.
По теореме Пифагора,
Если AM=20 см, то AC=24 см, BC=10 см.
Если AM=6 см, то AC=10 см, BC=24 см.
ответ: 120 см².