Опустим высоты в двух плоскостях и найдем их. Обозначим их как АН и DН1. Рассмотрим треугольник АВС, высота опущенная на сторону СВ делит ее на два отрезка СН и НВ. Обозначим СН=х,тогда НВ=14-х. По теореме Пифагора из треугольника САН:АН^2=АС^2-СН^2 и из треугольника АНВ: АН^2=АВ^2-НВ^2. Так как высота АН-общая сторона,то АС^2-СН^2=АВ^2-НВ^2 169-х^2=225-(14-х)^2 169-х^2=225-196+28х-х^2 28х=140 х=5(СН) 14-5=9(НВ) Теперь найдем АН по теореме Пифагора: АН^2=АС^2-СН^2=169-25=144; АН=12 Рассмотрим треугольник CDB. Высота DH1 опущенная на сторону ВС является так же медианой,т.к. треугольник CDB-равнобедренный, то СН1=Н1В=14/2=7 По теореме Пифагора найдем высоту: DH1^2=CD^2-CH1^2=81-47=32 DH1=4sqrt2 Угол между плоскостями (АВС)и (DBC) равен 45 град. По теореме косинусов найдем AD. AD^2=32+144-2*12*4sqrt2*cos45= =176-96sqrt2*sqrt2/2=80 AD=4sqrt5
1) От вершины А треугольника АВС в противоположную сторону от данного треугольника нужно отобразить такой же треугольник. Получим треугольник АВ1С1 Треугольник нужно отобразить вниз относительно стороны АС,т.е. вершина В опустится в низ. Получим треугольник АВ1С. Тогда получим угол АСВ1 2) а) Если рассмотреть фигуру АВС как прямоугольный треугольник,то АС=2, СВ=4ед. При центральной симметрии, найдем середину отрезка АВ,т.е середину гипотенузы, она равна х= -1+3/2=1; у=-2+0/2= -1. Значит середина отрезка имеет координаты (1;-1). Точка симметричная относительно вершины С будет вершиной такого же прямоугольного треугольника т.е. получившийся при симметрии треугольник будет иметь координаты А1(-1;2) В1(-5;0). Найдем середину отрезка х= -1-5/2= -3 у=2+0/2= 1. Т.е. точка которую отображается середина отрезка АВ при центральной симметрии с центром С имеет координаты (-3;1) б) Середину отрезка АВ мы нашли из первой задачи. Если при осевой симметрии с осью АС,то с построим прямоугольный треугольник симметричный относительно АС,тогда получим треугольник с координатами В1(-5;0),а точка А сохранит свои координаты. Найдем середину отрезка АВ1: х=-5-1/2= -3; у=0-2/2= -1. Значит точка в которой отображается середина отрезка АВ при осевой симметрии с осью АС имеет координаты (-3;-1)
Рассмотрим треугольник АВС, высота опущенная на сторону СВ делит ее на два отрезка СН и НВ. Обозначим СН=х,тогда НВ=14-х. По теореме Пифагора из треугольника САН:АН^2=АС^2-СН^2 и из треугольника АНВ: АН^2=АВ^2-НВ^2. Так как высота АН-общая сторона,то
АС^2-СН^2=АВ^2-НВ^2
169-х^2=225-(14-х)^2
169-х^2=225-196+28х-х^2
28х=140
х=5(СН)
14-5=9(НВ)
Теперь найдем АН по теореме Пифагора: АН^2=АС^2-СН^2=169-25=144; АН=12
Рассмотрим треугольник CDB. Высота DH1 опущенная на сторону ВС является так же медианой,т.к. треугольник CDB-равнобедренный, то СН1=Н1В=14/2=7
По теореме Пифагора найдем высоту: DH1^2=CD^2-CH1^2=81-47=32
DH1=4sqrt2
Угол между плоскостями (АВС)и (DBC) равен 45 град. По теореме косинусов найдем AD. AD^2=32+144-2*12*4sqrt2*cos45=
=176-96sqrt2*sqrt2/2=80
AD=4sqrt5
Треугольник нужно отобразить вниз относительно стороны АС,т.е. вершина В опустится в низ. Получим треугольник АВ1С. Тогда получим угол АСВ1
2)
а) Если рассмотреть фигуру АВС как прямоугольный треугольник,то АС=2, СВ=4ед. При центральной симметрии, найдем середину отрезка АВ,т.е середину гипотенузы, она равна х= -1+3/2=1; у=-2+0/2= -1. Значит середина отрезка имеет координаты (1;-1). Точка симметричная относительно вершины С будет вершиной такого же прямоугольного треугольника т.е. получившийся при симметрии треугольник будет иметь координаты А1(-1;2) В1(-5;0). Найдем середину отрезка х= -1-5/2= -3 у=2+0/2= 1. Т.е. точка которую отображается середина отрезка АВ при центральной симметрии с центром С имеет координаты (-3;1)
б) Середину отрезка АВ мы нашли из первой задачи. Если при осевой симметрии с осью АС,то с построим прямоугольный треугольник симметричный относительно АС,тогда получим треугольник с координатами В1(-5;0),а точка А сохранит свои координаты. Найдем середину отрезка АВ1: х=-5-1/2= -3; у=0-2/2= -1. Значит точка в которой отображается середина отрезка АВ при осевой симметрии с осью АС имеет координаты (-3;-1)