Визначити вид трикутника АВС: А (0; – 2; 2) і В (3; – 2; –2) і С (2; 0; – 2) (за сторонами: рівносторонній, рівнобедрений, різносторонній і за кутами: гострокутний, прямокутний, тупокутний). Знайти периметр трикутника.
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С. 2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С. 3) Через точки пересечения этих окружностей (К и Н) проведем прямую b. Прямая b - искомый перпендикуляр к прямой а.
Доказательство: А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС. Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.
Обозначим вершины трапеции аbcd ad=34 bc=2 проведём диагональ ас и опустим высоту сн. трапеция равнобокая dн=(аd-bc)/2=16 ac пересекает параллельные прямые аd и bc поэтому накрест лежащие углы равны . угол саd равен углу асв. кроме того са биссектриса угла всd . поэтому cad также равен углу асd. рассмотрим треугольник асd. в нем мы только что установили что угол а равен углу с. поэтому аd равно dc = 34 теперь рассмотрим треугольник снd. он прямоугольный . угол н прямой. dc=34 dh=16 по теореме пифагора ch = √(34^2-16^2)= 30 площадь трапеции - средняя линия (аd+bc)/2= 18 умножить на найденную высоту сн=30 - равна 540 см^2
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.