Восновании треугольной пирамиды лежит прямоугольный треугольник с катетами 7 и 24 см. боковые ребра образуют с высотой пирамиды углы, равные 30°. найдите боковые ребра.
Пусть нижнее (большее) основание равно a; верхнее равно b, а боковые стороны равны c. Поскольку в трапецию вписана окружность, суммы противоположных сторон равны, откуда с=(a+b)/2.
Кроме того, S трапеции равна полусумме оснований на высоту, которая у нас равна двум радиусам ⇒ S=(a+b)R⇒a+b=S/R; c=S/(2R).
Совершив стандартную процедуру - опустив высоты из вершин верхнего основания на нижнее, разбиваем нижнее на три отрезка, средний из которых равен b, а крайние равны (a-b)/2.
Один из таких отрезков вместе с боковой стороной и высотой образуют прямоугольный треугольник, из которого находим нижний катет (я там уже избавился от двойки в знаменателе):
Кроме того, S трапеции равна полусумме оснований на высоту, которая у нас равна двум радиусам ⇒ S=(a+b)R⇒a+b=S/R; c=S/(2R).
Совершив стандартную процедуру - опустив высоты из вершин верхнего основания на нижнее, разбиваем нижнее на три отрезка, средний из которых равен b, а крайние равны (a-b)/2.
Один из таких отрезков вместе с боковой стороной и высотой образуют прямоугольный треугольник, из которого находим нижний катет (я там уже избавился от двойки в знаменателе):
a-b=2√(S^2/(4R^2)-4R^2)=√(S^2-16R^2)/R
Вспомнив a+b=S/R, получаем формулы для a и b:
a=(S+ √(S^2-16R^2))/(2R);
b=(S- √(S^2-16R^2))/(2R)
МК/АБ=МН/АС=к
8/4=12/6=2
треугольники АБС и МНК подобны
угол С=180-80-60=40
по 2 свойству подобия (подобие сохраняет величины углов)
угол А=М=80
угол В=К=60
угол С=Н=40
2. т.к. МК II АС => треугольники АВС и МВК подобные.
ВМ:АМ=1:4
пусть ВМ=х, тогда АМ=4х, тогда АВ=х+4х=5х =>
МВ:АВ=1:5
коэффициент подобия=1:5=0,2
Мы знаем, что отношение периметров подобных треугольников равно коэффициенту подобия =>
периметр треугольника МВК : периметру треугольника АВС = 1:5
периметр треугольника МВК=периметр треугольника АВС : 5
периметр треугольника МВК=25:5=5см.