Восстановите последовательность этапов решения задачи: выберите правильный ответ.
Дано: угол α, отрезки a, b. построить треугольник по двум сторонам и углу между ними.
На одной стороне угла отметить точку К так, чтобы отрезок МК был равен заданному отрезку a.
На другой стороне угла отметить точку N так, чтобы отрезок MN был равен заданному отрезку b.
Соединить точки K и N отрезком.
Построить угол М, равный заданному углу α.
∆ MKN – искомый.

12345
12435
41235
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см
24√2 см³
Объяснение:
Задание
Сторона основания правильной четырёхугольной пирамиды равна 6 см. Двугранный угол при ребре основания равен arctg 2/3. Найти объём пирамиды.
Решение
1) Так как четырёхугольная пирамида SABCD (см. рисунок) правильная, то, согласно определению правильной пирамиды, в её основании лежит квадрат (ABCD), а основание высоты (SO) совпадает с центром пересечения диагоналей основания (в точке О).
2) Так как SO⊥плоскости основания ABCD, то SO⊥OC, лежащей в плоскости основания, в силу чего ОС является проекцией бокового ребра SC на плоскость основания, а ∠SCO, принадлежащий диагональному сечению пирамиды (проходит через диагональ АС основания пирамиды и её вершину), является градусной мерой двугранного угла при ребре основания, то есть ∠SCO = arctg 2/3 (угол, тангенс которого равен 2/3).
3) Диагонали квадрата ABCD в точке пересечения О делятся пополам. Следовательно:
ОС = AC/2 = √(АD²+DC²) / 2 = √(6²+6²) / 2 = (√72)/2 =√(36·2)/2 =
= (6√2) /2 = 3√2 см
4) В прямоугольном ΔSOC стороны SO (высота пирамиды) и ОС (проекция бокового ребра на плоскость основания) являются катетами.
Катет равен другому катету, умноженному на тангенс угла, противолежащего этому катету.
SO = OC · tg (arctg 2/3) = OC · 2/3 =3√2 · 2/3 = 2√2 см
5) Объём пирамида равен произведению 1/3 площади основания на высоту:
V = 6²· 2√2 : 3 = 12· 2√2 = 24√2 см³ ≈ 24 · 1,4142 ≈ 33,94 см³
ответ: объём пирамиды равен 24√2 см³ ≈ 33,94 см³