Пусть центр окружности к которой проведена касательная, точка О. ов- радиус, проведённый в точку касания, значит перпендикулярен касательной ВС. Угол СВА равен 90 градусов минус угол ОВА. Треугольник ВОА равнобедренный, значит углы при основании ОВА и ОАВ равны. Центральный угол ВОА равен 180 градусов минус два угла ОВА. Получается, что центральный угол в два раза больше угла между касательной и хордой и равен 92 градуса. Кроме того известно, что центральный угол (меньше развёрнутого) равен градусной мере дуги, на которую он опирается. ответ 92 градуса.
Рассмотрим сечение призмы, перпендикулярное всем трём боковым рёбрам. Это треугольник. обозначим стороны этого треугольника a, b, c. каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см. площадь двух граней дана. S_1 = a*5 = 20 a = 4 см S_2 = b*5 = 20 b = 4 см Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов. треугольник сечения равнобедренный с углом при вершине 60° Угол при основании (180 - 60)/2 = 120/2 = 60° Т.е. треугольник равносторонний c = 4 см площадь третьей грани S_3 = 4*5 = 20 см^2 Полная боковая поверхность 3*20 = 60 см^2
обозначим стороны этого треугольника a, b, c.
каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см.
площадь двух граней дана.
S_1 = a*5 = 20
a = 4 см
S_2 = b*5 = 20
b = 4 см
Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов.
треугольник сечения равнобедренный с углом при вершине 60°
Угол при основании
(180 - 60)/2 = 120/2 = 60°
Т.е. треугольник равносторонний
c = 4 см
площадь третьей грани
S_3 = 4*5 = 20 см^2
Полная боковая поверхность
3*20 = 60 см^2