Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
опускаем высоту на большее основание. получаем два прямоугольных треугольника. Если опустим обе высоты,то прекция меньшего основания на большое равна 5 см. оставшиеся 2 см делятся поровну по 1 см около каждой боковой стороны,поскольку тарпеция равнобедренная и углы при основаниях равны.Высоты равны,боковые стороны равны,а угол проитив боковой стороны 90 по построению. оба треугольника при боковых сторонах конгруэнтны, значит стороны треугольника при боковой стороне и высоте равны √17 , 1 и Н по Пифагору получаем
Н²=(√17)² - 1² =17 - 1 =16, Н=4 Высота 4 см. А от большого основания остается 6 см -катет треугольника ,образованного высотой,диагональю и 6 см от большого основания. Ищем диагональ по Пифагору.
Д²=6²+4²=36+16=52 =4*13
извлекаем корень и получаем диагональ равна 2√13см
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
диагональ равна 2√13см
Объяснение:
опускаем высоту на большее основание. получаем два прямоугольных треугольника. Если опустим обе высоты,то прекция меньшего основания на большое равна 5 см. оставшиеся 2 см делятся поровну по 1 см около каждой боковой стороны,поскольку тарпеция равнобедренная и углы при основаниях равны.Высоты равны,боковые стороны равны,а угол проитив боковой стороны 90 по построению. оба треугольника при боковых сторонах конгруэнтны, значит стороны треугольника при боковой стороне и высоте равны √17 , 1 и Н по Пифагору получаем
Н²=(√17)² - 1² =17 - 1 =16, Н=4 Высота 4 см. А от большого основания остается 6 см -катет треугольника ,образованного высотой,диагональю и 6 см от большого основания. Ищем диагональ по Пифагору.
Д²=6²+4²=36+16=52 =4*13
извлекаем корень и получаем диагональ равна 2√13см