Осевое сечение цилиндра проходит через центральнуь ось цилиндра ОО1 и через диаметры оснований. В сечении получается прямоугольник,,диагональ которого равна 8.,Она составляет с образующей 60гр.,значит из прямоугольного тр-ка АВС, образованного диагональю АС сечения АВСД, диаметром ВС и образующей АВ, В тр-ке АВС уг.А=60гр,уг С=30гр.,Значит Образующая АВ= 1/2 АС=4. По теореме Пифагора находим диаметрВС=4V3, R=2V3 Sпол= Sбок + 2Sосн 2Sосн = 2п R^2 Sбок =2п R*H S = 2*3.14*2V3*4 + 2*3,14*12= 25.12(2V3+3) Sбок = 2п RH
Первый номер как я понял не требуется №2 найдем координаты вектора АВ: АВ = (15; -5) из отношения АВ:ВС = 5:1, следует, что АС: АВ = 6:5 вектор АС = вектор АВ* 6/5 = (18; -6) зная координаты вектора АС и координаты его начала находим координаты его конца, то бишь координаты точки С: С=(18-10;-6+4) = (8;-2)
№4 в общем для доказательства нужно знать суммирование векторов по правилу параллелограмма достраиваешь треугольник до параллелограмма, продолжаешь медиану на ее собственную длину и получается диагональ параллелограмма, а дальше все будет видно
Sпол= Sбок + 2Sосн
2Sосн = 2п R^2
Sбок =2п R*H S = 2*3.14*2V3*4 + 2*3,14*12= 25.12(2V3+3)
Sбок = 2п RH
№2
найдем координаты вектора АВ: АВ = (15; -5)
из отношения АВ:ВС = 5:1, следует, что АС: АВ = 6:5
вектор АС = вектор АВ* 6/5 = (18; -6)
зная координаты вектора АС и координаты его начала находим координаты его конца, то бишь координаты точки С:
С=(18-10;-6+4) = (8;-2)
№3
соsα = (3*5 + 4*12)/(√(3²+4²)*√(5² +12²²)) = 63/65
№4
в общем для доказательства нужно знать суммирование векторов по правилу параллелограмма
достраиваешь треугольник до параллелограмма, продолжаешь медиану на ее собственную длину и получается диагональ параллелограмма, а дальше все будет видно