1) Объем шара V1=4pir^2; 4pir^2=36pi; r^2-9; r=3. 2) Осевым сечением конуса будет равносторонний тр-к, а шара - круг, вписанный в этот тр-к. Центр вписанного в тр-к круга лежит в точке пересечения биссектрис. Но в равностороннем тр-ке это и медианы и высоты. Точка пересечения медиан делит медиану в отношении 2:1, считая от вершины. Значит высота тр-ка равна 3*3=9 Это и высота конуса h=9. 3) R - радиус основания конуса. По определению тангенса tg60o=h/R; R=h/tg60 = 9/V3 = 3V3. 4) Объем конуса V= (1/3)piR^2*h = (1/3)pi*(3V3)^2 * 9 = 1/3pi * 27 * 9=81pi кв. ед. ответ: 81pi кв. ед.
2) Осевым сечением конуса будет равносторонний тр-к, а шара - круг, вписанный в этот тр-к. Центр вписанного в тр-к круга лежит в точке пересечения биссектрис. Но в равностороннем тр-ке это и медианы и высоты. Точка пересечения медиан делит медиану в отношении 2:1, считая от вершины. Значит высота тр-ка равна 3*3=9 Это и высота конуса h=9.
3) R - радиус основания конуса. По определению тангенса tg60o=h/R; R=h/tg60 = 9/V3 = 3V3.
4) Объем конуса V= (1/3)piR^2*h = (1/3)pi*(3V3)^2 * 9 = 1/3pi * 27 * 9=81pi кв. ед.
ответ: 81pi кв. ед.
Надеюсь Удачи в учебе
h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || .
h² =9(h+4) ;
h² -9h -36 =0 ;
[h= -3 ( не решения ) ; h =12 (см) .
b₁ =h+4 = 12+4 =16 (см).
Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 ||
или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) .
b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 ||
или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |