ответ:1 задание - по 2м сторонам и углу между ними (1 признак)
2 задание - по 3м сторонам (3 признак)
3 задание - по стороне и 2м прилежащем углам (2 признак)
4 задание - нет (т.к. Они равны по по 2 признаку, BD- общая)
5 задание - по 2м сторонам и углу между ними (1 признак)
Задачи:
1)ОК=ОМ(усл)
2)Угол КОР = угол МОР (т.к бисс.)
3)ОР - Общ.
Из этого всего => треугольники равны, по 1 признаку.
Уг М = уг Т(Т.к. уг Р=уг К, вертикальные углы при точке О)
1)Уг М= уг Т
2)Вертикальные при т. О
3)МО=ОТ(усл)
Из всего этого => треугольники равны по 2 признаку
Объяснение:
В основании призмы лежит прямоугольный треугольник, в котором, по теореме Пифагора, определим длину гипотенузы АВ.
АВ2 = ВС2 + ВС2 = 82 + 62 = 64 + 36 = 100.
АВ = 10 см.
Так как боковая грань АА1В1В квадрат, то АА1 = АВ = ВВ1 = А1В1 = 10 см.
Определим периметр треугольника АВС.
Р = АВ + ВС + АС = 10 + 8 + 6 = 24 см.
Определим площадь боковой поверхности.
Sбок = Р * А1А = 24 * 10 = 240 см2.
ответ: Площадь боковой поверхности равна 240 см2.
решал такую задачу только ты как-то неверно написал
ответ:1 задание - по 2м сторонам и углу между ними (1 признак)
2 задание - по 3м сторонам (3 признак)
3 задание - по стороне и 2м прилежащем углам (2 признак)
4 задание - нет (т.к. Они равны по по 2 признаку, BD- общая)
5 задание - по 2м сторонам и углу между ними (1 признак)
Задачи:
1)ОК=ОМ(усл)
2)Угол КОР = угол МОР (т.к бисс.)
3)ОР - Общ.
Из этого всего => треугольники равны, по 1 признаку.
Уг М = уг Т(Т.к. уг Р=уг К, вертикальные углы при точке О)
1)Уг М= уг Т
2)Вертикальные при т. О
3)МО=ОТ(усл)
Из всего этого => треугольники равны по 2 признаку
Объяснение:
В основании призмы лежит прямоугольный треугольник, в котором, по теореме Пифагора, определим длину гипотенузы АВ.
АВ2 = ВС2 + ВС2 = 82 + 62 = 64 + 36 = 100.
АВ = 10 см.
Так как боковая грань АА1В1В квадрат, то АА1 = АВ = ВВ1 = А1В1 = 10 см.
Определим периметр треугольника АВС.
Р = АВ + ВС + АС = 10 + 8 + 6 = 24 см.
Определим площадь боковой поверхности.
Sбок = Р * А1А = 24 * 10 = 240 см2.
ответ: Площадь боковой поверхности равна 240 см2.
Объяснение:
решал такую задачу только ты как-то неверно написал