Втреугольнике abc боковые стороны(ab=bc) равны 4 см, угол b равен 120°. d∈ab так, что ad=db. e∈bc так, что be=ec. найти скалярное произведение векторов ba и bc, ba и ac, de и ac
использованы формулы: площадь полной поверхности, площадь ромба, теорема Пифагора
Площадь полной поверхности параллелепипеда равна 2 площади основания + площадь боковой поверхности. Т. к. большая диагональ парал-да образует с боковым ребром угол 45 град., то большая диагональ ромба равна боковому ребру - получается прямоугольный треугольник с острым углом 45 град. след. он равнобедренный. Находим по теореме Пифагора. Пусть ребро - х, тогда х2 + х2 = (16 корней из 2) 2, 2 х х2=16 х 2, х2=256, х=16. Вторая диагональ ромба и боковое ребро равны 16 см. Площадь ромба ноходим, как половину произведения его диагоналей, а площадь боковой поверхности - периметр основания на боковое ребро. Сторона основания (по т. Пифогора) равна корню кв. из 6 в квадрате + 8 в квадрате (диагонали ромба перпендикулярны и делятся точкой пересечения пополам) 36+64=100, т. е. 10.
S=2Sосн.+Sбок.=2 х 1/2 х 12 х16 + 10 х 4 х 16 = 16 (12+40) = 832 кв. см.
MO=ON(Т.К. РАДИУСЫ)
Доказываем равенство треугольников по свойству касательных из одной точки,
Тогда угол KON=MOK и они по 60 градусов. 120/2=60 градусов.
Есть два прямоугольных треугольника. Радиусы ON и OM находятся по свойство угла в 30 градусов, т.е.
2ON=OK
2ON=12 /2(ДЕЛИЛИ ОБЕ ЧАСТИ)
ON=6
Затем находим всё по теореме Пифагора.
KN+ON=OK(все величины в квадрате)
KN2+36=144
KN2=144-36=108 градусов.
корень из KN=корень из 108 радусов и это 6 корней из 3.
KN=KM(по свойству отрезков касательных)
ответ:KN=KM=6 корней из 3.
использованы формулы: площадь полной поверхности, площадь ромба, теорема Пифагора
Площадь полной поверхности параллелепипеда равна 2 площади основания + площадь боковой поверхности. Т. к. большая диагональ парал-да образует с боковым ребром угол 45 град., то большая диагональ ромба равна боковому ребру - получается прямоугольный треугольник с острым углом 45 град. след. он равнобедренный. Находим по теореме Пифагора. Пусть ребро - х, тогда х2 + х2 = (16 корней из 2) 2, 2 х х2=16 х 2, х2=256, х=16. Вторая диагональ ромба и боковое ребро равны 16 см. Площадь ромба ноходим, как половину произведения его диагоналей, а площадь боковой поверхности - периметр основания на боковое ребро. Сторона основания (по т. Пифогора) равна корню кв. из 6 в квадрате + 8 в квадрате (диагонали ромба перпендикулярны и делятся точкой пересечения пополам) 36+64=100, т. е. 10.
S=2Sосн.+Sбок.=2 х 1/2 х 12 х16 + 10 х 4 х 16 = 16 (12+40) = 832 кв. см.