Пусть площадь треугольника не меньше 1. Из формулы S=1/2*a*h следует, что каждая сторона треугольника больше 2. Без ограничения общности можно считать, что AB - наименьшая сторона треугольника ABC. Пусть CH - высота. Рассмотрим меньший из отрезков AH и BH. Без ограничения общности можно считать, что это AH. AH не больше половины AB и AH не больше половины AC. CH меньше половины AC. Тогда AH+CH<AC, и для треугольника ACH не выполняется неравенство треугольника, что невозможно. Противоречие. Значит, площадь будет меньше 1.
Пусть площадь треугольника не меньше 1. Из формулы S=1/2*a*h следует, что каждая сторона треугольника больше 2. Без ограничения общности можно считать, что AB - наименьшая сторона треугольника ABC. Пусть CH - высота. Рассмотрим меньший из отрезков AH и BH. Без ограничения общности можно считать, что это AH. AH не больше половины AB и AH не больше половины AC. CH меньше половины AC. Тогда AH+CH<AC, и для треугольника ACH не выполняется неравенство треугольника, что невозможно. Противоречие. Значит, площадь будет меньше 1.