Введите с клавиатуры пропущенные элементы текста. Дано: Δ A B C , D – середина В С , D P ⊥ А В , D F ⊥ A C , D P = D F . Доказать: Δ A B C – равнобедренный. Доказательство: Δ B P D = Δ C F D , т. к. = , = (по признаку равенства прямоугольных треугольников), следовательно, ∠ B = ∠ , и поэтому треугольник А В С – (по признаку треугольника).
В равнобедренном треугольнике ABC угол B равен 110 градусов. Определите угол между прямой, содержащей высоту AA1, и прямой, содержащей биссектрису BB1. ответ запишите в градусах.
Объяснение:
Высота АА₁ падает на продолжение стороны ВС, т.к ∠АВС тупой. Тогда углом между между прямой, содержащей высоту AA₁, и прямой, содержащей биссектрису BB₁ будет∠АОВ₁ .
Угол АВС внешний для Δ АВА₁, значит ∠ВАА₁=110°-90°=20°.
ΔАВС-равнобедренный, углы при основании равны
∠ВАС=(180-110°):2=35° → ∠В₁АО=35°+20°=55°.
Δ АОВ₁ -прямоугольный , ∠АОВ₁=90°-55°=35°
1. Если бы углы были равны, то их значение было бы равно 78⁰:2=39°.
Но они не равны и разница между ними 18°. То есть значения углов отличаются от половинного на +9° и -9°. Следовательно, меньший из них
(АОВ) равен (78°:2)-9°=30°, а больший из них (искомый) равен
<СОВ = (78:2) + 9 = 48 градусов.
2. Пусть оба угла равны и равны меньшему из данных. Тогда их сумма была бы равна 78°-18°=60°. Значит меньший угол равен <AOB=60°:2=30°.
Тогда больший (искомый) угол <СОВ равен 30°+18°=48°.
3. Пусть оба угла равны и равны большему из данных. Тогда их сумма была бы равна 78°+18°=96°. Значит больший угол равен 96°:2=48°.
ответ: <COB=48°.