Через любые три точки, которые не лежат на одной прямой, можно провести только одну плоскость.(аксиома) Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы) Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β . Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD. Проведем прямую параллельно АD. Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы)
Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β .
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD.
Проведем прямую параллельно АD.
Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.