Пирамида правильная, следовательно, её основание - правильный многоугольник, грани - равнобедренные треугольники, вершина проецируется в центр основания.
Апофемой называют высоту грани правильной пирамиды. Апофема ЅМ - перпендикулярна АВ, её проекция НМ – перпендикулярна АВ ( по т. о 3-х перпендикулярах).⇒ ∆ ЅНМ – прямоугольный, ВМ=АМ, КН=МН и КМ параллельна и равна ВС. Высота ЅН=L•sinα. BC=2NM=2•L•cosα ⇒S(ABCD)=4L²•cos²α V=4L²•cos²α•L•sinα:3=4L³•cos²α•sinα:3,
Назовем точку буквой М расстояние от М до плоскости - это перпендикуляр, опущенный в центр треугольника найдем сторону треугольника из формулы
a²=432 a=12√3
высота треугольника является его медианой (т к правильный), что позволяет найти нам ее по теореме Пифагора: (12√3)²=(6√3)²+h² h²=324 h=18
как уже говорилось, высота - это еще и медиана, а медиана в правильном треугольнике делится в отношении 2:1, считая от вершины
отсюда из прямоугольного треугольника, который образуется перпендикуляром, проведенным из точки М и 1/3*H и искомым расстоянием от точки до стороны, найдем расстояние, которое просят назовем это расстояние буквой F
Формула объёма пирамиды V=S•h:3. Пусть данная пирамида SABCD, SM=L– апофема, ЅН - высота, угол ЅМН= α
Пирамида правильная, следовательно, её основание - правильный многоугольник, грани - равнобедренные треугольники, вершина проецируется в центр основания.
Апофемой называют высоту грани правильной пирамиды. Апофема ЅМ - перпендикулярна АВ, её проекция НМ – перпендикулярна АВ ( по т. о 3-х перпендикулярах).⇒ ∆ ЅНМ – прямоугольный, ВМ=АМ, КН=МН и КМ параллельна и равна ВС. Высота ЅН=L•sinα. BC=2NM=2•L•cosα ⇒S(ABCD)=4L²•cos²α V=4L²•cos²α•L•sinα:3=4L³•cos²α•sinα:3,
расстояние от М до плоскости - это перпендикуляр, опущенный в центр треугольника
найдем сторону треугольника из формулы
a²=432
a=12√3
высота треугольника является его медианой (т к правильный), что позволяет найти нам ее по теореме Пифагора:
(12√3)²=(6√3)²+h²
h²=324
h=18
как уже говорилось, высота - это еще и медиана, а медиана в правильном треугольнике делится в отношении 2:1, считая от вершины
отсюда из прямоугольного треугольника, который образуется перпендикуляром, проведенным из точки М и 1/3*H и искомым расстоянием от точки до стороны, найдем расстояние, которое просят
назовем это расстояние буквой F
F²=8²+(1/3*18)²=64+36=100
F=10
ответ: 10