Як на вашу думку, чи є рівень забезпечення природними ресурсами визначальним для розвитку економіки країни? Відповідь аргументуйте, обгрунтуйте, наведіть приклади!
1. Чтобы определить координаты точки на координатной прямой, надо посчитать, сколько единичных отрезков от начала отсчета до данной точки. Если точка справа от начала отсчета, то координата положительная, если слева - отрицательная.
Например: А(4), В( - 3).
2. Чтобы определить координаты точки на координатной плоскости, надо провести из точки перпендикуляры к осям координат (спроецировать точку на оси координат), а потом посчитать количество единичных отрезков до основания перпендикуляра.
Если точка находится в правой полуплоскости, координата х положительна, в левой - отрицательна. Если точка находится в верхней полуплоскости, то координата у положительна, в нижней - отрицательна.
Искомое сечение SOK, так как оно проходит через прямую SO и прямую ОК, параллельную прямой BD (ОК║BD как средняя линия треугольника BCD). А если прямая BD параллельна прямой, лежащей в сечении, то она параллельна секущей плоскости.
Пирамида правильная, значит в основании квадрат. Все ребра по 6 см, значит боковые грани - равные равносторонние треугольники.
Диагональ квадрата равна а√2, где а - сторона квадрата.
BD = 6√2 см
ОК = BD/2 = 3√2 см
SO = SK как высоты равных равносторонних треугольников,
SO = SK = a√3/2 = 6√3/2 = 3√3 см (а - ребро пирамиды)
Psok = SO + SK + OK = 3√3 + 3√3 + 3√2 = 6√3 + 3√2 = 3(2√3 + √2) см
1. Чтобы определить координаты точки на координатной прямой, надо посчитать, сколько единичных отрезков от начала отсчета до данной точки. Если точка справа от начала отсчета, то координата положительная, если слева - отрицательная.
Например: А(4), В( - 3).
2. Чтобы определить координаты точки на координатной плоскости, надо провести из точки перпендикуляры к осям координат (спроецировать точку на оси координат), а потом посчитать количество единичных отрезков до основания перпендикуляра.
Если точка находится в правой полуплоскости, координата х положительна, в левой - отрицательна. Если точка находится в верхней полуплоскости, то координата у положительна, в нижней - отрицательна.
В скобках первой указывается координата х.
Например: А(3 ; - 2), В(- 1; 4).
Отметим точку К - середину ребра CD.
Искомое сечение SOK, так как оно проходит через прямую SO и прямую ОК, параллельную прямой BD (ОК║BD как средняя линия треугольника BCD). А если прямая BD параллельна прямой, лежащей в сечении, то она параллельна секущей плоскости.
Пирамида правильная, значит в основании квадрат. Все ребра по 6 см, значит боковые грани - равные равносторонние треугольники.
Диагональ квадрата равна а√2, где а - сторона квадрата.
BD = 6√2 см
ОК = BD/2 = 3√2 см
SO = SK как высоты равных равносторонних треугольников,
SO = SK = a√3/2 = 6√3/2 = 3√3 см (а - ребро пирамиды)
Psok = SO + SK + OK = 3√3 + 3√3 + 3√2 = 6√3 + 3√2 = 3(2√3 + √2) см