Яке з наведених тверджень правильне,якщо задано площину бета, точки F і K , що лежать на прямій m, m є b(бета). А) Пряма m не лежить у площині b(бета)
Б) Пряма m перетинає площину b(бета) у точці F
В) Пряма m перетинає площину b(бета) у точці K
Г) Пряма m лежить у площині b(бета)
Д) Серед наведених тверджень правильного немає
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
По теореме косинусов:
АВ²=АС²+ВС²-2АС*ВС*cos C=AC²+50²-2*AC*50*0,6=AC²+2500-60AC.
3364=AC²+2500-60AC;
AC²-60AC-864=0.
D=3600+3456=7056=84².
Третья сторона AC=(60+84)/2=72.
Также по теореме косинусов найдем
ВС²=АВ²+АС²-2АВ*АС*соs A=58²+72²-2*58*72*cos A=3364+5184-8352*cos A=8548-8352cos A,
отсюда cos A= (8548-2500)/8352=6048/8352=21/29=0,724.
Aналогично АС²=АВ²+ВС²-2АВ*ВС*соs B=58²+50²-2*58*50*cos B=3364+2500-5800*cos B=5864-5800*cos B,
отсюда соs B=(5864-5184)/5800=680/5800=17/145=0,117.
ответ: 72 см, соs B=0,117, cos A=0,724.