По условию, угол С - внешний. Т.к. внешним углом треугольника называют угол, смежный с одним из углов треугольника, а по свойству о сумме углов, сумма смежных углов=180°, следовательно, угол С = 180°-143°=37°.
По теореме,в равнобедренном треугольнике углы при основании равны, значит угол А=углу С=37°. По теореме об углах треугольников, сумма всех углов треугольника =180°, следовательно угол АВС=180°-(37°+37°)=180°-74°=106°.
По условиям угол АДВ=углу СДА, а так как диагональ в трапеции является секущей при её параллельных основаниях, то угол СВД=углу АДВ, как внутренние разносторонние, и следовательно равен углу СДВ. Рассмотрим ∆ВСД. Так как 2 угла при его основании равны, то он является равнобедренным и стороны ВС=СД=10см. Проведём высоту СН. Она делит нижнее основание так, что АН= ВС=10см, тогда отрезок НД=18-10=8см. Рассмотрим ∆СДН. Он прямоугольный так как Н - высота. Также в нём уже известны 2 стороны, и теперь можно найти высоту СН по теореме Пифагора: СН²=СД²-НД²:
СН=√(10²-8²)=√(100-64)=√36=6см;
СН=6см. Теперь найдём площадь трапеции зная высоту по формуле:
Дано: треугольник АВС- равнобедренный,
АС- основание,
внешний угол С =143°
Найти: угол АВС -?
По условию, угол С - внешний. Т.к. внешним углом треугольника называют угол, смежный с одним из углов треугольника, а по свойству о сумме углов, сумма смежных углов=180°, следовательно, угол С = 180°-143°=37°.
По теореме,в равнобедренном треугольнике углы при основании равны, значит угол А=углу С=37°. По теореме об углах треугольников, сумма всех углов треугольника =180°, следовательно угол АВС=180°-(37°+37°)=180°-74°=106°.
ответ: угол АВС=106°
Объяснение:
Так вроде
S=84 см²
Объяснение:
По условиям угол АДВ=углу СДА, а так как диагональ в трапеции является секущей при её параллельных основаниях, то угол СВД=углу АДВ, как внутренние разносторонние, и следовательно равен углу СДВ. Рассмотрим ∆ВСД. Так как 2 угла при его основании равны, то он является равнобедренным и стороны ВС=СД=10см. Проведём высоту СН. Она делит нижнее основание так, что АН= ВС=10см, тогда отрезок НД=18-10=8см. Рассмотрим ∆СДН. Он прямоугольный так как Н - высота. Также в нём уже известны 2 стороны, и теперь можно найти высоту СН по теореме Пифагора: СН²=СД²-НД²:
СН=√(10²-8²)=√(100-64)=√36=6см;
СН=6см. Теперь найдём площадь трапеции зная высоту по формуле:
S=(ВС+АД)÷2×СН=(10+18)÷2×6=28÷2×6=
=14×6=84см²; S=84см²