M и N – середины боковых сторон трапеции ABCD, тогда отрезок MN – средняя линия трапеции.
Свойства средней линии трапеции:
1) средняя линия трапеции параллельна основаниям;
2) средняя линия трапеции равна половине суммы оснований.
Тогда, по 1 свойству, прямая, проходящая через среднюю линию MN, будет параллельна прямой, проходящей через основание АD.
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Получается:
MN параллельна АD, АD лежит в плоскости α, следовательно, по признаку параллельности прямой и плоскости, MN || α.
По второму свойству средней линии трапеции:
MN = (ВС + АD)/2
АD = 2·MN – ВС
АD = 2∙6 – 4
АD = 8
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
M и N – середины боковых сторон трапеции ABCD, тогда отрезок MN – средняя линия трапеции.
Свойства средней линии трапеции:
1) средняя линия трапеции параллельна основаниям;
2) средняя линия трапеции равна половине суммы оснований.
Тогда, по 1 свойству, прямая, проходящая через среднюю линию MN, будет параллельна прямой, проходящей через основание АD.
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Получается:
MN параллельна АD, АD лежит в плоскости α, следовательно, по признаку параллельности прямой и плоскости, MN || α.
По второму свойству средней линии трапеции:
MN = (ВС + АD)/2
АD = 2·MN – ВС
АD = 2∙6 – 4
АD = 8
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.