Із точки А, взятої поза площиною α, проведено до неї рівні похилі АВ і АС. Відстань ВС між основами похилих дорівнює 10см. Кут між ВС і АВ дорівнює 60 градусов, кут між ВС і проекцією похилої АВ на площину α - 30 градусов. Знайти відстань від точки А до площини α.
0,5 мм
Объяснение:
Пусть толщина буквы - х мм.
Буква Н состоит из трёх прямоугольников: двух одинаковых вертикально расположенных и одного горизонтально расположенного.
Площадь прямоугольника вычисляется по формуле: S=a×b, где а - длина, b - ширина.Тогда площадь вертикально расположенных прямоугольников : по 9х мм² каждый.
Площадь горизонтально расположенного прямоугольника: (4-2х)×х мм².
Так как площадь буквы составляет 10,5 мм², составляем уравнение:
9х+9х+(4-2х)×х=10,5
18х+4х-2х²-10,5=0
-2х²+22х-10,5=0
х²-11х+5,25=0
Получили, что толщина буквы равна 0,5 мм либо 10,5 мм.
10,5 мм не подходит по условию, т.к. в этом случае ширина и длина самой буквы будет больше, чем 4мм и 9мм соответственно.
ответ: толщина буквы 0,5 мм
1) Через середину гипотенузы строим прямую а, перпендикулярную основанию.
2) В плоскости, которая задается этой прямой и ребром AD проводим серединный перпендикуляр к AD.
3) Точка пересечения серединного перпендикуляра и прямой а - центр описанной сферы.
Объяснение:
Если сфера описана около данной пирамиды, то основание пирамиды вписано в окружность - сечение сферы.
Основание - прямоугольный треугольник. Центр описанной около него окружности лежит на середине гипотенузы.
Пусть Н - середина гипотенузы ВС прямоугольного треугольника BCD.
Тогда точка Н - центр окружности, описанной около ΔBCD, равноудалена от всех вершин основания.
Отрезок, соединяющий центр сечения сферы с центром сферы, перпендикулярен сечению.Проведем через точку Н прямую а║AD. AD⊥(BCD), так как AD⊥BD и AD⊥DC, значит а⊥(BCD).
Центр сферы будет лежать на прямой а.
Любая точка прямой а равноудалена от вершин основания. Осталось найти на ней точку, удаленную от вершины А на то же расстояние, что и от остальных вершин.
Для этого в плоскости (ADH) проведем серединный перпендикуляр к ребру AD. К - середина AD, проведем КО║DН до пересечения с прямой а.
О - центр сферы.