З точки до площини квадрата зі стороною 1 см проведено перпендикуляр з основою у вершині квадрата. Відстань від даної точки до протилежної вершини квадрата дорівнює 1√3 см. Знайдіть відстань від цієї точки до площини квадрата.
Трапеция АВСД, АВ=СД, уголА=уголД, ВС=2х, АД=2*ВС=4х, проводим высоты ВН и СК на АД, ВН=АД=диаметр вписанной окружности=2r, Треугольник АВН=треугольник КСД как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник, ВС=НК=2х, АН=КД=(АД-НД)/2=(4х-2х)/2=х, в трапецию можно вписать окружность при условии когда сумма оснований=сумме боковых сторон, АВ+СД=ВС+АД, АВ+СД=2х+4х=6х, АВ=СД=6х/2=3х, треугольник АВН прямоугольный, ВН=корень(АВ в квадрате-АН в квадрате)=корень(9*х в квадрате-х в квадрате)=2х*корень2=2r, х=2r/2*корень2=r*корень2/2, ВС=2*r*корень2/2=r*корень2, АД=4*r*корень2/2=2r*корень2, площадь АВСД=(ВС+АД)*ВН/2=(r*корень2+2r*корень2)*2r/2=3*r в квадрате*корень2
Дано:
ABCDA₁B₁C₁D₁ - прямая призма
ABCD - трапеция
CD = KM = 6 см AB = 20 см
AD = 13 см BC = 15 см
AA₁ = 17 см
-------------------------------------------------
Найти:
V - ?
Рассмотрим основание призмы.
Проведем высоты: DK⊥AB, MC⊥AB
Пусть AK = x см, тогда MB = AB - AK - KM = 20 см - x см - 6 см = 14-x см.
Из ΔAKD: KD² = AD² - AK² = (13 см)² - (x см)²
Из ΔMBC: MC² = BC² - MB² = (15 см)² - (14-x см)²
Теперь решим систему уравнений с двумя неизвестными:
Где KD = MC = h, следовательно:
Теперь приравняем их:
169 см² - x² см² = 225 см² - (196 - 28x + x²) см²
169 см² - x² см² = 225 см² - 196 + 28x - x² см²
-x²+x²-28x = 225-196-169
-28x = -140 | : (-28)
x = 5 ⇒ AK = 5 см
Вычислим высоту основания из ΔAKD, и ΔMBC:
KD = √AD² - AK² = √(13 см)² - (5 см)² = √169 см² - 25 см² = √144 см² = 12 см
MC = √BC² - MB² = √(15 см)² - (14-5 см)² = √225 см² - (9 см)² = √225 см² - 81 см² = √144 см² = 12 см
KD = MC = 12 см
Теперь вычислим площадь основания призмы при площади трапеций:
(Sосн. = S(ABCD)) = (CD+AB)/2 × DK = (6 см + 20 см)/2 × 17 см = 26 см/2 × 17 см = 13 см × 17 см = 221 см²
И теперь мы находим объём призмы по такой формуле:
V = Sосн. × h = Sосн. × AA₁ = 221 см² × 17 см = 3757 см³
ответ: V = 3757 см³
P.S. Рисунок показан внизу↓