Із точок А і В, які належать різним граням двогранногг кута, опустили перпедникуляри АС і ВД на його ребро. Знайдіть даний двогранний кут, якщо АС=СД=ВД=2 см. АВ=√2 см.
Решение весьма уважаемой мною Моявесна абсолютно точное. Просто я не могу отказать себе в маленьком удовольствии - показать, что площадь этого треугольника можно сосчитать устно. Для этого достаточно заметить (сообразить), что треугольник со сторонами (25, 29, 36) составлен из двух Пифагоровых треугольников (то есть прямоугольных треугольников, длины сторон которых - целые числа). Это треугольники (15, 20, 25) и (20, 21, 29), они приставлены друг к другу катетами длины 20 так, что другие катеты - 15 и 21 образуют вместе сторону 36 исходного треугольника.
Отсюда сразу ясно, что высота к стороне 36 равна 20, и это наименьшая из высот, поскольку 36 - наибольшая из сторон.
Треугольник АВС, АВ=25, ВС=29, АС=36, высоты ВН, АМ, СТ, вершина угол В
cosВ = (АВ в квадрате + ВС в квадрате - АС в квадрате) / 2 х АВ х ВС=
= (625 +841 - 1296) / (2 х 25 х 29) =0,1172 - угол 83 =уголВ , sin 83 (В)= 0,9925
АС/sinВ = АВ/sinС, 36/0,9925=25/sinС, sinС = 0,6892
АС/sinВ = ВС/sinА, 36/0,9925=29/sinА, sinА = 0,7995
ВН = АВ х sinА = 25 х 0,7995 =20
СТ = АС х sinА = 36 х 0,7995 = 28,8
АМ = Ас х sinС = 36 х 0,6892 = 24,8
Найменьшая высота проведена на большую сторону АС
Если найдена одна высота остальные можно искать через отношение
ha : hb = (1/a) : (1/b)
Решение весьма уважаемой мною Моявесна абсолютно точное. Просто я не могу отказать себе в маленьком удовольствии - показать, что площадь этого треугольника можно сосчитать устно. Для этого достаточно заметить (сообразить), что треугольник со сторонами (25, 29, 36) составлен из двух Пифагоровых треугольников (то есть прямоугольных треугольников, длины сторон которых - целые числа). Это треугольники (15, 20, 25) и (20, 21, 29), они приставлены друг к другу катетами длины 20 так, что другие катеты - 15 и 21 образуют вместе сторону 36 исходного треугольника.
Отсюда сразу ясно, что высота к стороне 36 равна 20, и это наименьшая из высот, поскольку 36 - наибольшая из сторон.