ЗА ПОДРОБНОЕ РЕШЕНИЕ ДВУХ ЗАДАЧ В правильной четырехугольной призме площадь основания 144, а диагональ призмы 22. Найдите объем призмы.
4. Стороны оснований правильной четырехугольной усеченной пирамиды относятся, как 3:2. Высота пирамиды равна 3. Боковое ребро составляет с плоскостью основания угол 60°. Найдите объем пирамиды.
Прямые скрещивающиеся
Прямые непараллельные и непересекающиеся называются скрещивающимися. Один из возможных вариантов чертежа скрещивающихся прямых показан на рис. 4.5, где l m, так как l не параллельна m и l не пересекается с m.
Рис. 4.5
Точка пересечения горизонтальных проекций скрещивающихся прямых является горизонтальной проекцией двух горизонтально конкурирующих точек 1 и 2, принадлежащих прямым l и m. Точка пересечения фронтальных проекций скрещивающихся прямых является фронтальной проекцией двух фронтально конкурирующих точек 3 и 4. По горизонтально конкурирующим точкам 1 и 2 определяется взаимное положение прямых l и m относительно П1. Фронтальная проекция 12 точки 1, принадлежащей прямой l, расположена выше, чем фронтальная проекция 22 точки 2, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена над прямой m.
По фронтально конкурирующим точкам 3 и 4 определяется взаимное положение прямых l и m относительно фронтальной плоскости проекций. Горизонтальная проекция 41точки 4, принадлежащей прямой l, расположена ниже, чем горизонтальная проекция 31 точки 3, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена перед прямой m
Пирамида SАВСД: основание АВСД (АВ=ВС=СД=АД=4). Вершина пирамиды S проектируется в точку О пересечения диагоналей основания (квадрата) АС и ВД, т.е. SO=7 - это высота пирамиды.
Проведем апофему пирамиды SK - это высота боковой грани.
Из прямоугольного ΔSKО:
SК=√(КО²+SО²)=√((4/2)²+7²)=√53
Площадь основания Sосн=АВ²=4²=16
Периметр основания Р=4АВ=4*4=16
Площадь боковой поверхности
Sбок=P*SK/2=16*√53/2=8√53
Площадь полной поверхности
Sполн=Sбок+Sосн=8√53+16