Задача No2 Задача 2: Прямая АС проходит через центр О 2 7 окружности. MAO = Осм = 30. Докажите, что прямая СМ является касательной к окружности. 30° о 300 Задача No 3 3 <BAC
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3 / (2√(5 - 4cos80°))
BB₁ = 3x = 9 / (2√(5 - 4cos80°)) или
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
площади сечений известны можем найти их радиусы R1=√11 R2=√14
Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5
V=4πR³ш/3=4π*125/3=прибл 523
S=4πR²ш=4*π*25=приблизительно 314