Сумма углов четырехугольника 360°. Если три угла по 90°, то и четвертый угол 90°. Значит это прямоугольник. Прямоугольник не является трапецией, так как трапеция - это четырехугольник, в котором две стороны параллельны, а две другие - не параллельны.
б) Нет.
В трапеции сумма углов, прилежащих к боковой стороне, равна 180° (эти углы - внутренние односторонние при пересечении параллельных прямых - оснований - секущей - боковой стороной).
Поэтому два угла, прилежащих к боковой стороне, не могут быть острыми.
1. Координаты середины отрезка - полусумма координат начала и конца. Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г). 3. Координаты вектора - разность координат конца и начала этого вектора. АВ{-2-2;7-7} или AB{-4;0}. 4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10. 5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности: (-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит. 6. Длина радиуса этой окружности - модуль вектора М0. |M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)
а) Нет.
Сумма углов четырехугольника 360°. Если три угла по 90°, то и четвертый угол 90°. Значит это прямоугольник. Прямоугольник не является трапецией, так как трапеция - это четырехугольник, в котором две стороны параллельны, а две другие - не параллельны.
б) Нет.
В трапеции сумма углов, прилежащих к боковой стороне, равна 180° (эти углы - внутренние односторонние при пересечении параллельных прямых - оснований - секущей - боковой стороной).
Поэтому два угла, прилежащих к боковой стороне, не могут быть острыми.
Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г).
3. Координаты вектора - разность координат конца и начала этого вектора.
АВ{-2-2;7-7} или AB{-4;0}.
4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10.
5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности:
(-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит.
6. Длина радиуса этой окружности - модуль вектора М0.
|M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)