площадь основания S1 =AB*AB*sin(pi/3)*1/2 = корень(3) боковая площадь S2 =AB*AA1*3 = 2*1*3=6 площадь полной поверхности призмы S3 = 2*S1+S2 = 2*корень(3) + 6
2) Найдите площадь сечения призмы плоскостью ACB1. площадь основания S1 = AB*AB*sin(pi/3)*1/2 = корень(3) высота треугольника основания h =AB*sin(pi/3)=корень(3) высота треугольника сечения h1 = корень(h^2+AA1^2)=2 площадь сечения призмы плоскостью ACB1 S4 = S1*h1/h = корень(3) * 2/корень(3) = 2
3) Найдите угол, который составляет прямая AB1 с плоскостью ABC. тангенс угла = BB1/AB=1/2 угол = арктангенс(0,5)
4) Найдите угол между плоскостями AB1C и ABC. высота треугольника основания h =AB*sin(pi/3)=корень(3) тангенс угла = BB1/h=1/корень(3) угол = арктангенс(1/корень(3)) = pi/6 = 30 градусов
5) Найдите длину вектора AA1-AC+2B1B-C1C AA1-AC+2B1B-C1C=CА+B1B+СC1=CА+A1A+AA1=CA ответ - 2 см
6) Докажите, что прямая A1C1 параллельна плоскости ACB1. прямая A1C1 параллельна прямой АС, лежащей вплоскости ACB1, значит параллельна плоскости ACB1
площадь основания S1 =AB*AB*sin(pi/3)*1/2 = корень(3)
боковая площадь S2 =AB*AA1*3 = 2*1*3=6
площадь полной поверхности призмы S3 = 2*S1+S2 = 2*корень(3) + 6
2) Найдите площадь сечения призмы плоскостью ACB1.
площадь основания S1 = AB*AB*sin(pi/3)*1/2 = корень(3)
высота треугольника основания h =AB*sin(pi/3)=корень(3)
высота треугольника сечения h1 = корень(h^2+AA1^2)=2
площадь сечения призмы плоскостью ACB1 S4 = S1*h1/h = корень(3) * 2/корень(3) = 2
3) Найдите угол, который составляет прямая AB1 с плоскостью ABC.
тангенс угла = BB1/AB=1/2
угол = арктангенс(0,5)
4) Найдите угол между плоскостями AB1C и ABC.
высота треугольника основания h =AB*sin(pi/3)=корень(3)
тангенс угла = BB1/h=1/корень(3)
угол = арктангенс(1/корень(3)) = pi/6 = 30 градусов
5) Найдите длину вектора AA1-AC+2B1B-C1C
AA1-AC+2B1B-C1C=CА+B1B+СC1=CА+A1A+AA1=CA
ответ - 2 см
6) Докажите, что прямая A1C1 параллельна плоскости ACB1.
прямая A1C1 параллельна прямой АС, лежащей вплоскости ACB1, значит параллельна плоскости ACB1
а-Н; б-В; в-Н; г-Н; д-В
Объяснение:
а) Равносторонний треугольник имеет ровно две оси симметрии; Н
равносторонний треугольник имеет три оси симметрии
б) Если все углы пятиугольника равны, то они имеют величину 108 градусов; В
сумма всех углов в пятиугольнике 540° а если углы равны то они будут по 540:5=108°
в) На каждой стороне треугольника существует точка, равноудаленная от двух других его сторон; Н
не всегда, возможно если треугольник равносторонний
г) В прямоугольном треугольнике высота, опущенная на гипотенузу, больше половины этой гипотенузы; Н
она меньше
д) Если внешний угол равнобедренного треугольника равен 100 градусов, то один из его углов равен 20 градусов. В
верно если этот внешний угол относится к основанию тогда
180-100=80 - угол при основании(равны)
180-80-80=20 - угол напротив основания