Тут, наверное, площадь поверхности шара, которая равна S=4\pi*r^2, где r - радиус шара. Остается только найти r. Пусть сторона куба равна а. Тогда V=a^3. По условию задачи V=125. Тогда 125=a^3. Тогда а=5. Теперь можно рассмотреть сечение куба, где у шара будет свой диаметр. В сечении получаем квадрат со стороной 5, внутрь которого вписана окружность. Очевидно, что диаметр этой окружности совпадает с длиной стороны квадрата, то есть d=5. d=2r, 2r=5, r=2,5. Подставим в вышеуказанную формулу. S=4*\pi*2,5^2. S=25*\pi
Центры описанной ( и вписанной) окружности и основание высоты такой пирамиды совпадают и находятся в точке пересечения медиан основания. Радиус описанной окружности равен 2/3 длины высоты основания правильного треугольника или (а• sin 60°:√3)•2 или R=a/√3 Найдите из этой формулы а ( сторону основания). Найдите радиус вписанной окружности - он равен половине радиуса описанной окружности. Затем, соединив вершину пирамиды с серединой стороны основания, по т.Пифагора найдете квадрат апофемы, затем и апофему. МК²= МО²+ОК². (r- радиус вписанной окружности). Рисунок приложения должен
S=4*\pi*2,5^2.
S=25*\pi
Радиус описанной окружности равен 2/3 длины высоты основания правильного треугольника или (а• sin 60°:√3)•2 или R=a/√3
Найдите из этой формулы а ( сторону основания).
Найдите радиус вписанной окружности - он равен половине радиуса описанной окружности.
Затем, соединив вершину пирамиды с серединой стороны основания, по т.Пифагора найдете квадрат апофемы, затем и апофему.
МК²= МО²+ОК². (r- радиус вписанной окружности). Рисунок приложения должен