Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
Средняя линия равнобедренной трапеции ABCD (BC||AD) равна 12 см. Диагональ AC образует с основанием угол 60. Найдите диагональ трапеции
Объяснение:
Т.к. средняя линия равна полусумме оснований трапеции , то сумма оснований будет равна двум длинам средней линии, те ВС+АD=2*12=24(cм)
Проведем ВТ||АС. Тогда АСВТ- параллелограмм , по определению параллелограмма⇒ ВС=АТ и АТ+АD=24
Тк ∠САD=60° и ВТ||АС , то ∠Т=60° как соответственный при секущей ТD.
В равнобедренной трапеции диагонали равны ⇒ВD=AC=BT ⇒ΔBTD- равнобедренный и тогда третий угол равен ∠ТВD=180°-60°-60°=60° ⇒ΔBTD- равносторонний и ВD=BT=AD=24см.
∠A = α + β
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°, значит
∠D = 180° - (α + β).
Площадь параллелограмма равна произведению двух сторон на синус угла между ними:
S = AB · AD · sinA.
∠ACD = ∠ВАС = α как накрест лежащие при пересечении параллельных прямых АВ и CD секущей АС.
Из ΔADC по теореме синусов:
d : sinD = CD : sinβ = AD : sin∠ACD
Так как CD = AB, получаем:
d : sinD = АВ : sinβ = AD : sinα
sinD = sin(180° - (α + β)) = sin(α + β) - по формуле приведения.
Из равенства d : sinD = АВ : sinβ выразим АВ:
AB = d · sinβ / sinD = d · sinβ / sin(α + β)
Из равенства d : sinD = AD : sinα выразим AD:
AD = d · sinα / sinD = d · sinα / sin(α + β)
S = (d · sinβ / sin(α + β)) · (d · sinα / sin(α + β)) · sinA =
= (d² · sinα · sinβ / sin²(α + β)) · sin(α + β) =
= d² · sinα · sinβ / sin(α + β)