Відповідь:
A1C и DB равен 90°.
Пояснення:
Пусть дан куб ABCDА1B1C1D1, А1С — диагональ куба; DB — диагональ грани куба.
Введем прямоугольную систему координат. С началом координат в т. D и осями, направленными вдоль ребер ОА, ОВ, ОС. Обозначим сторону куба через а.
https://ru-static.z-dn.net/files/db8/7fabd2e163d548ee435973a4d2fc01c5.png
Тогда
1.
https://ru-static.z-dn.net/files/d03/960059a78aaeb368ff09035647522aff.png
2.
https://ru-static.z-dn.net/files/d84/f0e867a68ec10485951a3ce407b94813.png
3.
https://ru-static.z-dn.net/files/d65/90661f99b8c5653eccbb98e37e38d02e.png
Следовательно,
https://ru-static.z-dn.net/files/d73/59578781fa9cf36028faf845653e9834.png
соответственно угол между прямыми
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²
Відповідь:
A1C и DB равен 90°.
Пояснення:
Пусть дан куб ABCDА1B1C1D1, А1С — диагональ куба; DB — диагональ грани куба.
Введем прямоугольную систему координат. С началом координат в т. D и осями, направленными вдоль ребер ОА, ОВ, ОС. Обозначим сторону куба через а.
https://ru-static.z-dn.net/files/db8/7fabd2e163d548ee435973a4d2fc01c5.png
Тогда
1.
https://ru-static.z-dn.net/files/d03/960059a78aaeb368ff09035647522aff.png
2.
https://ru-static.z-dn.net/files/d84/f0e867a68ec10485951a3ce407b94813.png
3.
https://ru-static.z-dn.net/files/d65/90661f99b8c5653eccbb98e37e38d02e.png
Следовательно,
https://ru-static.z-dn.net/files/d73/59578781fa9cf36028faf845653e9834.png
соответственно угол между прямыми
A1C и DB равен 90°.
16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²